Preparation and Properties Study of Wood-Based Cushioning Materials.

Polymers (Basel)

Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.

Published: March 2023

Traditional cushioning package materials, such as Expended Polystyrene (EPS) and Expanded Polyethylene (EPE), were made with petroleum-based plastics, which are harmful to the environment. It is crucial to develop renewable bio-based cushioning materials that can replace the aforementioned foams due to the rising energy demands of human society and the depletion of fossil fuels. Herein, we report an effective strategy for creating anisotropic elastic wood with special spring-like lamellar structures. Selective removal of lignin and hemicellulose by simple chemical treatment and thermal treatment of the samples after freeze-drying results in an elastic material with good mechanical properties. The resulting elastic wood has a reversible compression rate of 60% and a high elastic recovery (99% height retention after 100 cycles at 60% strain). Drop tests revealed that the elastic wood has excellent cushioning properties. In addition, the chemical and thermal treatments also enlarge the pores in the material, which is favorable for subsequent functionalization. By loading the elastic wood with a muti-walled carbon nanotube (MWCNT), electromagnetic shielding properties are achieved, while the mechanical properties of elastic wood remain unchanged. Electromagnetic shielding materials can effectively suppress various electromagnetic waves propagating through space and the resulting electromagnetic interference and electromagnetic radiation, improve the electromagnetic compatibility of electronic systems and electronic equipment, and ensure the safety of information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054834PMC
http://dx.doi.org/10.3390/polym15061417DOI Listing

Publication Analysis

Top Keywords

elastic wood
20
cushioning materials
8
mechanical properties
8
properties elastic
8
electromagnetic shielding
8
elastic
7
electromagnetic
6
wood
5
preparation properties
4
properties study
4

Similar Publications

Reversible biomass aerogels with flame retardancy and smart elasticity.

Natl Sci Rev

February 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, China.

View Article and Find Full Text PDF

Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.

View Article and Find Full Text PDF

Inhaled ozone induces distinct alterations in pulmonary function in models of acute and episodic exposure in female mice.

Toxicol Sci

January 2025

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854.

Ozone is an urban air pollutant, known to cause lung injury and altered function. Using established models of acute (0.8 ppm, 3 h) and episodic (1.

View Article and Find Full Text PDF

Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures.

Materials (Basel)

January 2025

Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.

In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.

View Article and Find Full Text PDF

Analyzing the Vibration Response of Adhesively Bonded Composite Cantilevers.

Materials (Basel)

December 2024

Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, 31-155 Kraków, Poland.

In this study, we investigated the vibration of adhesively bonded composite cantilevers consisting of two beech wood lamella and a bondline of flexible polyurethane. The beams had a constant total height, while the thickness of the adhesive layer varied. We analyzed both the driven and free vibration of a single cantilever beam and a cantilever with an additional mass attached to its end.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!