Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications.

Polymers (Basel)

Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.

Published: March 2023

Packaging is one of the major domains in the food processing industry that reduces waste and enhances product shelf life. Recently, research and development have focused on bioplastics and bioresources to combat environmental issues caused by the alarming growth of single-use plastic waste food packaging. The demand for natural fibres has recently increased because of their low cost, biodegradability and eco-friendliness. This article reviewed recent developments in natural fibre-based food packaging materials. The first part discusses the introduction of natural fibres in food packaging, with a focus on fibre source, composition and selection parameters, while the second part investigates the physical and chemical ways to modify natural fibres. Several plant-derived fibre materials have been utilised in food packaging as reinforcements, fillers and packaging matrices. Recent investigations developed and modified natural fibre (physical and chemical treatments) into packaging using casting, melt mixing, hot pressing, compression moulding, injection moulding, etc. These techniques majorly improved the strength of bio-based packaging for commercialisation. This review also identified the main research bottlenecks and future study areas were suggested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059869PMC
http://dx.doi.org/10.3390/polym15061393DOI Listing

Publication Analysis

Top Keywords

food packaging
20
natural fibres
12
packaging
9
natural fibre-based
8
physical chemical
8
food
6
natural
5
advances natural
4
fibre-based materials
4
materials food
4

Similar Publications

Quinoa polysaccharides have attracted significant research interest in recent years due to their diverse biological activities, including antiviral, anti-inflammatory, antioxidant, and immunoregulatory properties. These attributes align with the growing global demand for natural, functional food ingredients, positioning quinoa polysaccharides as a valuable resource in food science and technology. This review presents an overview of the various bioactivities of quinoa polysaccharides, critically evaluates the methods used for their extraction and purification, describes their structural characteristics, and discusses their practical applications across multiple areas within the food industry, including food additives, meat products, health foods, and innovative food packaging.

View Article and Find Full Text PDF

Background: Polyether ether ketone (PEEK) was modified by a sulfuric and nitric acid mixed system to improve the solubility of the material and the gas selective permeability of the film. SN1 and SN5, synthesized from mixed acid systems (with ratios of nitric acid and sulfuric acid of 1:1 and 1:5, respectively) were chosen because they had comparable nitro groups but differing sulfonyl groups. To investigate the impact of the type and content of sulfonated and nitrated polyether ether ketone (SNPEEK) on the structure and physicochemical properties of the films, SN1/polyvinyl chloride (PVC) and SN5/polyvinyl chloride films were made by adding varying amounts of SN1 and SN5 (0.

View Article and Find Full Text PDF

Development of heat sealable film from tapioca and potato starch for application in edible packaging.

J Food Sci Technol

February 2025

Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.

This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.

View Article and Find Full Text PDF

Formulation optimization and characterization of biodegradable containers incorporated with orange peel powder and tamarind seed powder.

J Food Sci Technol

February 2025

Dept. of Food Processing Tech. A. D. Patel Institute of Technology, Charutar Vidya Mandal University, New Vallabh Vidyanagar, Anand, Gujarat India.

Unlabelled: A huge amount of fruits and vegetables is being produced and processed in India and therefore the waste is also generated in high quantities. These wastes are good sources of vitamins, enzymes, cellulose, and many other essential compounds. The non-utilization of these bio-wastes leads to economic loss and also environmental problems.

View Article and Find Full Text PDF

The environmental crisis was brought on by composites made of synthetic materials that are not biodegradable. Eco-friendly replacement materials for non-biodegradable composites is biodegradable composites. The poisonous remnants are avoided because of how the environment breaks them down.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!