Characterization of the NAC Transcription Factor in Passion Fruit () and Functional Identification of in Cold Stress.

Plants (Basel)

State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China.

Published: March 2023

The NAC (NAM, ATAF and CUC) gene family plays an important role in plant development and abiotic stress response. However, up to now, the identification and research of the NAC () family members of passion fruit are still lacking. In this study, 25 were identified from the passion fruit genome, and their functions under abiotic stress and at different fruit-ripening stages were analyzed. Furthermore, we analyzed the transcriptome sequencing results of under four various abiotic stresses (drought, salt, cold and high temperature) and three different fruit-ripening stages, and verified the expression results of some genes by qRT-PCR. Additionally, tissue-specific analysis showed that most were mainly expressed in flowers. In particular, was induced by four various abiotic stresses. At present, low temperatures have seriously endangered the development of passion fruit cultivation. Therefore, was transformed into tobacco, yeast and Arabidopsis to study their function of resisting low temperature. The results show that responded to cold stress significantly in tobacco and Arabidopsis, and could improve the low temperature tolerance of yeast. This study not only improved the understanding of the gene family characteristics and evolution, but also provided new insights into the regulation of the gene at different stages of fruit maturation and abiotic stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051797PMC
http://dx.doi.org/10.3390/plants12061393DOI Listing

Publication Analysis

Top Keywords

passion fruit
16
abiotic stresses
12
cold stress
8
gene family
8
abiotic stress
8
fruit-ripening stages
8
low temperature
8
fruit
5
abiotic
5
characterization nac
4

Similar Publications

Lasiodiplodia theobromae is an emerging threat and the main pathogenic fungi associated with basal stem rot of passion fruit in Guangxi Zhuang Autonomous Region, China. Current pathogen identification protocols are labor-intensive and time-consuming, emphasizing the need for more efficient methods to enable precise surveillance of L. theobromae for early detection and warning.

View Article and Find Full Text PDF

Fresh passion fruit is sensitive to chilling injury (CI) during storage at improper low temperature of 5 °C, which lowers the fruit quality and limits its shelf life. The present study aimed to determine the impacts of melatonin on CI development of passion fruit in relation to antioxidant ability and membrane lipid metabolism during refrigeration. In present study, passion fruit was treated with 0.

View Article and Find Full Text PDF

Passion fruit seed extract protects hydrogen peroxide-induced cell damage in human retinal pigment epithelium ARPE-19 cells.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.

View Article and Find Full Text PDF

Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp.

Plant Physiol Biochem

December 2024

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.

Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp.

View Article and Find Full Text PDF

Identification and Molecular Characterization of Telosma Mosaic Virus (TelMV) and East Asian Passiflora Virus (EAPV) from Patchouli in China.

Viruses

November 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Patchouli is a valuable medicinal herb and cash crop in China, but viral infections cause significant yield losses. This study identified six viruses in patchouli transcriptome data, including the first-ever detection of East Asian Passiflora Virus (EAPV) in patchouli. RT-PCR validated three viruses from diseased patchouli plants in Haikou, China: telosma tosaic virus (TelMV), broad bean wilt virus-2 (BBWV-2), and pogostemom alphacytorhabdovirus 1 (PogACRV1_Pog).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!