AI Article Synopsis

  • LED technology is crucial for plant growth, particularly in enhancing specific metabolite production in kohlrabi sprouts exposed to different light conditions.
  • Red LED light resulted in the highest fresh weight of sprouts, while blue LED promoted the longest shoot and root growth; blue light also maximized phenylpropanoid and glucosinolate contents.
  • Overall, blue LED light is best for growth and metabolite enhancement, whereas white LED light effectively increases carotenoid levels in kohlrabi sprouts.

Article Abstract

Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi ( var. ) sprouts exposed to different LED light conditions. The results showed that the highest fresh weight was achieved under red LED light, whereas the highest shoot and root lengths were recorded below the blue LED light. Furthermore, high-performance liquid chromatography (HPLC) analysis revealed the presence of 13 phenylpropanoid compounds, 8 glucosinolates (GSLs), and 5 different carotenoids. The phenylpropanoid and GSL contents were highest under blue LED light. In contrast, the carotenoid content was found to be maximum beneath white LED light. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) of the 71 identified metabolites using HPLC and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) showed a clear separation, indicating that different LEDs exhibited variation in the accumulation of primary and secondary metabolites. A heat map and hierarchical clustering analysis revealed that blue LED light accumulated the highest amount of primary and secondary metabolites. Overall, our results demonstrate that exposure of kohlrabi sprouts to blue LED light is the most suitable condition for the highest growth and is effective in increasing the phenylpropanoid and GSL content, whereas white light might be used to enhance carotenoid compounds in kohlrabi sprouts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057582PMC
http://dx.doi.org/10.3390/plants12061296DOI Listing

Publication Analysis

Top Keywords

led light
28
primary secondary
16
secondary metabolites
16
blue led
16
light
9
kohlrabi var
8
var sprouts
8
sprouts exposed
8
led
8
analysis revealed
8

Similar Publications

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

Studies on the Virucidal Effects of UV-C of 233 nm and 275 nm Wavelengths.

Viruses

December 2024

Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.

Among the physical decontamination methods, treatment with ultraviolet (UV) radiation is a suitable means of preventing viral infections. Mercury vapor lamps (254 nm) used for room decontamination are potentially damaging to human skin (radiation) and harmful to the environment (mercury). Therefore, other UV-C wavelengths (100-280 nm) may be effective for virus inactivation on skin without damaging it, e.

View Article and Find Full Text PDF

In this work, three carboxymethyl starches (CMS) were obtained by the two-step reaction process of carboxymethylation with different degrees of substitution (0.16, 0.33, and 0.

View Article and Find Full Text PDF

Green mold caused by is a major post-harvest disease in citrus fruits. Therefore, the search for sustainable and low-environmental-impact alternatives for the management of these fungi is of utmost importance. L.

View Article and Find Full Text PDF

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!