AI Article Synopsis

Article Abstract

The study of litter can provide an important reference for understanding patterns of forest nutrient cycling and sustainable management. Here, we measured litterfall (leaves, branches, etc.) from a wet, evergreen, broad-leaved forest in Ailao Mountains of southwestern China on a monthly basis for 11 years (2005-2015). We measured the total biomass of litter fall as well as its components, and estimated the amount of C, N, P, K, S, Ca, and Mg in the amount of litterfall. We found that: The total litter of evergreen, broadleaved forest in Ailao Mountains from 2005 to 2015 was 7.70-9.46 t/ha, and the output of litterfall differed between years. This provides a safeguard for the soil fertility and biodiversity of the area. The total amount of litterfall and its components showed obvious seasonal variation, with most showing a bimodal pattern (peak from March to May and October to November). The majority of litterfall came from leaves, and the total amount as well as its components were correlated with meteorological factors (wind speed, temperate and precipitation) as well as extreme weather events. We found that among years, the nutrient concentration was sorted as C > Ca > N > K > Mg > S > P. The nutrient concentration in the fallen litter and the amount of nutrients returned showed a decreasing trend, but the decreasing rate was slowed through time. Nutrient cycling was influenced by meteorological factors, such as temperature, precipitation, and wind speed, but the nutrient utilization efficiency is high, the circulation capacity is strong, and the turnover time is short. Our results showed that although there was nutrient loss in this evergreen, broad-leaved forest, the presence of forest litterfall can effectively curb potential ecological problems in the area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057009PMC
http://dx.doi.org/10.3390/plants12061277DOI Listing

Publication Analysis

Top Keywords

nutrient cycling
12
evergreen broad-leaved
12
broad-leaved forest
12
forest ailao
12
ailao mountains
12
litterfall leaves
8
well components
8
amount litterfall
8
total amount
8
meteorological factors
8

Similar Publications

Shifts in fungal communities drive soil profile nutrient cycling during grassland restoration.

mBio

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi, China.

Soil microbial diversity and community life strategies are crucial for nutrient cycling during vegetation restoration. Although the changes in topsoil microbial communities during restoration have been extensively studied, the structure, life strategies, and function of microbial communities in the subsoil remain poorly understood, especially regarding their role in nutrient cycling during vegetation restoration. In this study, we conducted a comprehensive investigation of the changes in the soil microbial community, assembly process, life strategies, and nutrient cycling functional genes in soil profiles (0-100 cm) across a 36 year chronosequence (5, 15, 28, and 36 years) of fenced grassland and one grazing grassland on the Loess Plateau of China.

View Article and Find Full Text PDF

Molecular Mechanism During Mycelium Subculture Degeneration of .

J Fungi (Basel)

December 2024

College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.

Periodic mycelial subculture is a method commonly used for the storage of edible mushrooms, but excessive subculturing can lead to the degeneration of strains. In this study, the strain V971(M0) was successively subcultured on PDA medium every 4 days, and one generation of strains was preserved every 4 months. Thus, five generations of subcultured strains (M1-M5) were obtained after 20 months of mycelial subculturing, their production traits were determined, and transcriptomic analysis was performed using RNA-seq; the differentially expressed genes were verified via RT-qPCR.

View Article and Find Full Text PDF

Environmental tipping points for global soil nitrogen-fixing microorganisms.

iScience

January 2025

Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-environment and Safe-product, Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.

Nitrogen-fixing microorganisms (NFMs) are important components of soil N sinks and are influenced by multiple environmental factors. We established a random forest model optimized by the distributed delayed particle swarm optimization (RODDPSO) algorithm to analyze the global NFM data. Soil pH, organic carbon (OC), mean annual precipitation (MAP), altitude, and total phosphorus (TP) are factors with contributions greater than 10% to NFMs.

View Article and Find Full Text PDF

Ulcerative colitis (UC) has experienced a steady increase in global incidence and prevalence recently. Current research into UC pathogenesis focuses on the complex interplay of genetic and environmental factors with the immune system and gut microbiome, leading to disruption of the intestinal barrier. Normally, the microbiome, intestinal epithelium, and immune system interact to maintain intestinal homeostasis.

View Article and Find Full Text PDF

Destabilization of Soil Carbon After Saltwater Intrusion in Coastal Agricultural Soils.

Environ Sci Technol

January 2025

Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.

Saltwater intrusion (SWI) is a concerning issue impacting agricultural production and soil C cycling, which can have a wider effect on the climate. Complex soil processes driving soil C cycling following saltwater intrusion have not yet been fully quantified. Agricultural fields with varying degrees of saltwater intrusion, unaffected control, and native tidal marsh were studied to understand the impacts of saltwater intrusion on soil properties and soil carbon dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!