The effects of exogenously-sourced NO (nitric oxide, as 100 µM SNP) and proline (50 mM) in the protection of the photosynthetic performance of wheat ( L.) plants against heat stress were investigated. The study focused on the mechanisms of proline accumulation, activity, gene expression of antioxidant enzymes, and NO generation. Plants were exposed to a temperature of 40 °C for 6 h per day over 15 days, then allowed to recover at 28 °C. Heat-stressed plants showed increased oxidative stress, with higher levels of HO and TBARS (thiobarbituric acid reactive substances) and increased proline accumulation, ACS activity, ethylene evolution, and NO generation, which in turn leads to increased accumulation of antioxidant enzymes and reduced photosynthetic attributes. In the tested wheat cultivar, the exogenous application of SNP and proline under heat stress improved the photosynthesis and reduced oxidative stress by enhancing the enzymatic antioxidant defense system. Potentially, the promoter AOX (alternative oxidase) played a role in maintaining redox homeostasis by lowering HO and TBARS levels. The genes for GR antioxidant and photosystem II core protein encoding psbA and psbB were highly up-regulated in nitric oxide and proline treated heat-stressed plants, indicating that ethylene positively impacted photosynthesis under high temperature stress. Moreover, nitric oxide supplementation under high temperature stress optimized ethylene levels to regulate the assimilation and metabolism of proline and the antioxidant system, lowering the adverse effects. The study showed that nitric oxide and proline increased high temperature stress tolerance in wheat by increasing the osmolytes accumulation and the antioxidant system, resulting in enhanced photosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053195 | PMC |
http://dx.doi.org/10.3390/plants12061256 | DOI Listing |
Scientifica (Cairo)
January 2025
Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFEur Respir J
January 2025
Sanofi, Bridgewater, NJ, USA.
Background: Monovalent biologics blocking thymic stromal lymphopoietin or interleukin-13 have been shown to elicit pharmacodynamic responses in asthma following a single dose. Therefore, dual blockade of these cytokines may result in an enhanced response compared to single targeting and has the potential to break efficacy ceilings in asthma. This study assessed the safety and tolerability of lunsekimig, a bispecific NANOBODY molecule that blocks thymic stromal lymphopoietin and interleukin-13, and its effect on Type 2 inflammatory biomarkers and lung function in asthma.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
From the Department of Dermatology, Center for Global Health, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania and Florida Center for Dermatology, St Augustine, Florida. Electronic address:
J Allergy Clin Immunol
January 2025
Division of Rhinology, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine; Monell Chemical Senses Center, Philadelphia; PA; Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!