Antiviral Mechanisms of -Phenyl Benzamides on Coxsackie Virus A9.

Pharmaceutics

Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland.

Published: March 2023

Enteroviruses are one of the most abundant groups of viruses infecting humans, and yet there are no approved antivirals against them. To find effective antiviral compounds against enterovirus B group viruses, an in-house chemical library was screened. The most effective compounds against Coxsackieviruses B3 (CVB3) and A9 (CVA9) were CL212 and CL213, two -phenyl benzamides. Both compounds were more effective against CVA9 and CL213 gave a better EC value of 1 µM with high a specificity index of 140. Both drugs were most effective when incubated directly with viruses suggesting that they mainly bound to the virions. A real-time uncoating assay showed that the compounds stabilized the virions and radioactive sucrose gradient as well as TEM confirmed that the viruses stayed intact. A docking assay, taking into account larger areas around the 2-and 3-fold axes of CVA9 and CVB3, suggested that the hydrophobic pocket gives the strongest binding to CVA9 but revealed another binding site around the 3-fold axis which could contribute to the binding of the compounds. Together, our data support a direct antiviral mechanism against the virus capsid and suggest that the compounds bind to the hydrophobic pocket and 3-fold axis area resulting in the stabilization of the virion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058015PMC
http://dx.doi.org/10.3390/pharmaceutics15031028DOI Listing

Publication Analysis

Top Keywords

-phenyl benzamides
8
hydrophobic pocket
8
3-fold axis
8
compounds
6
antiviral mechanisms
4
mechanisms -phenyl
4
benzamides coxsackie
4
coxsackie virus
4
virus enteroviruses
4
enteroviruses abundant
4

Similar Publications

A Fe-catalyzed hydrocyclization reaction of unactivated alkenes was developed, utilizing PhSiH as the hydrogen source, yielding 2,3-dihydroquinazolinone (DHQZ) derivatives in moderate to good yields. Notably, when the substrate was switched to -cyano--(2-(prop-1-en-2-yl)phenyl)benzamides, the reaction yielded only the unreduced products. Mechanistic studies revealed that the intramolecular addition of the in situ formed radical to the unactivated alkene results in the formation of the fused ring.

View Article and Find Full Text PDF

Carbonic anhydrases (CAs) IX and XII are crucial for the survival and metastasis of solid tumors under hypoxic conditions. We designed compounds -, integrating triazole and benzenesulfonamide scaffolds known for inhibiting tumor-associated CAs IX/XII. Initial synthesis included compounds -, followed by diversification with small hydrophobic groups (-) and hydrophilic heterocyclic secondary amines (-).

View Article and Find Full Text PDF

Cryptosporidium parvum is a protozoan parasite that causes severe diarrheal illness in children and each year nearly 50,000 children under age 5 die due to the disease. Despite tremendous research efforts, there remains a lack of effective therapies and vaccines. Novel inhibitors against N-myristoyltransferase of C.

View Article and Find Full Text PDF

PPAR agonists for the treatment of cholestatic liver diseases: Over a decade of clinical progress.

Hepatol Commun

January 2025

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA.

Article Synopsis
  • Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are liver diseases that damage bile ducts, leading to bile accumulation, liver injury, and increased risk of liver failure; current treatments are limited, especially for PSC.
  • Ursodeoxycholic acid is the first-line treatment for PBC, but many patients do not respond fully, indicating a need for better therapies; pruritus (itching) is a common and severe symptom due to cholestasis that is often inadequately treated.
  • The review examines the use of PPAR agonists, a type of medication that targets liver metabolism, as potential second-line treatments for PBC and PSC, highlighting recent FDA approvals for
View Article and Find Full Text PDF

Ebola and Marburg (EBOV and MARV) filoviral infections lead to fatal hemorrhagic fevers and have caused over 30 outbreaks in the last 50 years. Currently, there are no FDA-approved small molecule therapeutics for effectively treating filoviral diseases. To address this unmet medical need, we have conducted a systematic structural optimization of an early lead compound, -(4-(4-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl)-4-(morpholinomethyl)benzamide (), borne from our previously reported hit-to-lead effort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!