A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hospital Production of Sterile 2% Propofol Nanoemulsion: Proof of Concept. | LitMetric

Hospital Production of Sterile 2% Propofol Nanoemulsion: Proof of Concept.

Pharmaceutics

Univ Angers, CHU Angers, INSERM, CNRS, MINT, SFR ICAT, UMR INSERM, F-49000 Angers, France.

Published: March 2023

In the context of essential drug shortages, this article reports a proof of concept for the hospital preparation of a 2% propofol injectable nanoemulsion. Two processes for propofol were assessed: mixing propofol with the commercial Intralipid 20% emulsion and a "de novo" process performed using separate raw materials (i.e., oil, water, and surfactant) and optimized for droplet size reduction with a high-pressure homogenizer. A propofol HPLC-UV stability-indicating method was developed for process validation and short-term stability. In addition, free propofol in the aqueous phase was quantified by dialysis. To envision routine production, sterility and endotoxin tests were validated. Only the "de novo" process using high-pressure homogenization gave satisfactory physical results similar to commercialized Diprivan 2%. Both terminal heat sterilization processes (121 °C, 15 min and 0.22 µm filtration) were validated, but an additional pH adjustment was required prior to heat sterilization. The propofol nanoemulsion was monodisperse with a 160 nm mean droplet size, and no droplets were larger than 5µm. We confirmed that free propofol in the aqueous phase of the emulsion was similar to Diprivan 2%, and the chemical stability of propofol was validated. In conclusion, the proof of concept for the in-house 2% propofol nanoemulsion preparation was successfully demonstrated, opening the field for the possible production of the nanoemulsion in hospital pharmacies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058537PMC
http://dx.doi.org/10.3390/pharmaceutics15030905DOI Listing

Publication Analysis

Top Keywords

propofol nanoemulsion
12
proof concept
12
propofol
10
"de novo"
8
novo" process
8
droplet size
8
free propofol
8
propofol aqueous
8
aqueous phase
8
heat sterilization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!