Emetic tartar (ET), was used in the treatment of leishmaniasis but its use was discontinued due to its low therapeutic index. Liposomes have been shown to be a promising strategy for delivery of bioactive substances in the region of interest, in order to reduce and/or eliminate undesirable effects. In the present study, liposomes containing ET were prepared and characterized to evaluate acute toxicity as well as their leishmanicidal action using BALB/c mice with an inoculum of () Liposomes were composed of egg phosphatidylcholine and 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol, with an average diameter of 200 nm, zeta potential of +18 mV, and ET encapsulated into liposomes at a concentration near 2 g/L. Healthy mice were treated with ET or liposome containing ET (Lip-ET) in a single dose of 16 mg/kg of Sb intravenously and observed for 14 days. The death of two animals in the ET-treated group and no deaths in the Lip-ET-treated group was observed. Higher hepatic and cardiac toxicity were observed in animals treated with ET when compared to animals treated with Lip-ET, blank liposomes (Blank-Lip) and PBS. The study of antileishmanial efficacy was conducted by intraperitoneal administration of Lip-ET, for ten consecutive days. It was observed by limiting dilution that treatments with liposomal formulations containing ET, as well as Glucantime, led to a significant reduction in parasitic load in spleen and liver ( < 0.05) when compared to the untreated control group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056186 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15030904 | DOI Listing |
Neurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFCurr Atheroscler Rep
January 2025
Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.
Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFMed Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!