Gene Therapy for Regenerative Medicine.

Pharmaceutics

The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.

Published: March 2023

The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057434PMC
http://dx.doi.org/10.3390/pharmaceutics15030856DOI Listing

Publication Analysis

Top Keywords

gene therapy
28
regenerative medicine
12
gene
10
tissue engineering
8
viral vectors
8
therapy
7
therapy regenerative
4
medicine development
4
development biological
4
biological methods
4

Similar Publications

Importance: Bietti crystalline dystrophy (BCD) is a severe genetic retinopathy caused by variants in the CYP4V2 gene. Currently, there is no approved treatment for BCD.

Objective: To evaluate safety and vision outcomes following gene therapy with adeno-associated virus (AAV) encoding CYP4V2 (rAAV-hCYP4V2, NGGT001 [Next Generation Gene Therapeutics]).

View Article and Find Full Text PDF

'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape.

Stem Cell Rev Rep

January 2025

Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.

Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.

View Article and Find Full Text PDF

SQSTM1/p62 predicts prognosis and upregulates the transcription of CCND1 to promote proliferation in mantle cell lymphoma.

Protoplasma

January 2025

Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.

Mantle cell lymphoma (MCL) is a rare, highly invasive non-Hodgkin's lymphoma. The main pathogenesis of MCL is associated with the formation of the IgH/CCND1 fusion gene and nuclear overexpression of cyclin D1, which accelerates the cell cycle, leading to tumorigenesis. The prognosis with current standard chemotherapy is still unsatisfactory.

View Article and Find Full Text PDF

Mechanism of female CHH caused by compound heterozygous mutations in the LHB gene.

J Assist Reprod Genet

January 2025

Institute of Basic Medical Sciences of the Chinese Academy of Medical Sciences, School of Basic Medicine, Center of Excellence in Tissue Engineering of Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory, PekingBeijing, 100730, China.

Background: Luteinizing hormone (LH) plays a crucial role in the postnatal development and maturation of gonads. Inactivating mutations of the luteinizing hormone beta subunit (LHB)gene are extremely rare and can result in congenital hypogonadotropic hypogonadism (CHH).

Methods: We conducted DNA sequencing on an 18-year-old female patient with undetectable LH and clinical symptoms of CHH.

View Article and Find Full Text PDF

We evaluated the prognostic and therapeutic significance of measurable residual disease (MRD) during remission induction in pediatric acute lymphoblastic leukemia (ALL) patients. In the CCCG-ALL-2015 protocol, 7640 patients were categorized into low-, intermediate-, or high-risk groups based on clinical and genetic features. Final risk classification was determined by MRD assessed via flow cytometry on Days 19 and 46 of remission induction, with additional intensified chemotherapy for Day 19 MRD ≥1%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!