Amphiphilic Cell-Penetrating Peptides Containing Arginine and Hydrophobic Residues as Protein Delivery Agents.

Pharmaceuticals (Basel)

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

Published: March 2023

The entry of proteins through the cell membrane is challenging, thus limiting their use as potential therapeutics. Seven cell-penetrating peptides, designed in our laboratory, were evaluated for the delivery of proteins. Fmoc solid-phase peptide synthesis was utilized for the synthesis of seven cyclic or hybrid cyclic-linear amphiphilic peptides composed of hydrophobic (tryptophan (W) or 3,3-diphenylalanine (Dip) and positively-charged arginine (R) residues, such as [WR], [WR], [WWRR], [WWRR], [(RW)K](RW), [RK]W, and [DipR]. Confocal microscopy was used to screen the peptides as a protein delivery system of model cargo proteins, green and red fluorescein proteins (GFP and RFP). Based on the confocal microscopy results, [WR] and [DipR] were found to be more efficient among all the peptides and were selected for further studies. [WR] (1-10 µM) + protein (GFP and RFP) physical mixture did not show high cytotoxicity (>90% viability) in triple-negative breast cancer cells (MDA-MB-231) after 24 h, while [DipR] (1-10 µM) physical mixture with GFP exhibited more than 81% cell viability. Confocal microscopy images revealed internalization of GFP and RFP in MDA-MB-231 cells using [WR] (2-10 μM) and [DipR] (1-10 µM). Fluorescence-activated cell sorting (FACS) analysis indicated that the cellular uptake of GFP was concentration-dependent in the presence of [WR] in MDA-MB-231 cells after 3 h of incubation at 37 °C. The concentration-dependent uptake of GFP and RFP was also observed in the presence of [DipR] in SK-OV-3 and MDA-MB-231 cells after 3 h of incubation at 37 °C. FACS analysis indicated that the cellular uptake of GFP in the presence of [WR] was partially decreased by methyl-β-cyclodextrin and nystatin as endocytosis inhibitors after 3 h of incubation in MDA-MB-231 cells, whereas nystatin and chlorpromazine as endocytosis inhibitors slightly reduced the uptake of GFP in the presence of [DipR] after 3 h of incubation in MDA-MB-231. [WR] was able to deliver therapeutically relevant proteins (Histone H2A) at different concentrations. These results provide insight into the use of amphiphilic cyclic peptides in the delivery of protein-related therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053436PMC
http://dx.doi.org/10.3390/ph16030469DOI Listing

Publication Analysis

Top Keywords

gfp rfp
16
mda-mb-231 cells
16
uptake gfp
16
confocal microscopy
12
1-10 µm
12
cell-penetrating peptides
8
protein delivery
8
[wr]
8
gfp
8
physical mixture
8

Similar Publications

Autophagic flux modulates tumor heterogeneity and lineage plasticity in SCLC.

Front Oncol

January 2025

Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Introduction: Small cell lung cancer (SCLC) is characterized by significant heterogeneity and plasticity, contributing to its aggressive progression and therapy resistance. Autophagy, a conserved cellular process, is implicated in many cancers, but its role in SCLC remains unclear.

Methods: Using a genetically engineered mouse model ( ; ; GFP-LC3-RFP-LC3△G), we tracked autophagic flux to investigate its effects on SCLC biology.

View Article and Find Full Text PDF

Introduction: Cadmium (Cd) and polystyrene microplastics (PS-MPs), two ubiquitous environmental contaminants, produce unique synergistic toxicity when co-existing. Key unanswered questions include specific effects on liver function and potential mechanisms.

Methods: In this study, C57BL/6 mice and AML12 cells were used to establish and models to elucidate the effects of combined exposure to PS-MPs and Cd on the liver and their mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • The vacuolar-type H-ATPase (V-ATPase) is essential for regulating pH levels in cells, and its activity is influenced by various pathways, particularly phosphorylation, which is not well understood.
  • In response to starvation, the kinase ABL1 phosphorylates a specific subunit of V-ATPase, ATP6V1B2, enhancing its assembly and function.
  • ABL1 inhibition disrupts V-ATPase assembly and lysosomal acidification, leading to impaired autophagy processes, including the degradation of damaged cellular components, highlighting ABL1's key role in cellular stress responses.
View Article and Find Full Text PDF

Triticum mosaic virus (TriMV; Poacevirus tritici) is the founding member of the genus Poacevirus within the family Potyviridae. TriMV is one of the components of the wheat streak mosaic disease (WSMD) complex, an economically significant wheat disease in the Great Plains region of the USA. TriMV contains a single-stranded positive-sense RNA genome of 10,266 nts with an unusually long 5'-nontranslated region of 739 nts.

View Article and Find Full Text PDF

Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux.

Phytomedicine

January 2025

Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China. Electronic address:

Article Synopsis
  • This study investigates the effectiveness of sanguinarine, a natural compound, against oral squamous cell carcinoma (OSCC), aiming to understand its mechanism of action.
  • Through extensive screening of drug libraries, sanguinarine was identified as a potent inhibitor that disrupts lysosomal function and impairs autophagic clearance in OSCC cells.
  • The research highlights sanguinarine's interaction with pyruvate kinase M2 (PKM2), leading to the inhibition of crucial cellular processes that contribute to OSCC progression.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!