Antimicrobial peptides (AMPs) have recently gained attention as a viable solution for combatting antibiotic resistance due to their numerous advantages, including their broad-spectrum activity, low propensity for inducing resistance, and low cytotoxicity. Unfortunately, their clinical application is limited due to their short half-life and susceptibility to proteolytic cleavage by serum proteases. Indeed, several chemical strategies, such as peptide cyclization, methylation, PEGylation, glycosylation, and lipidation, are widely used for overcoming these issues. This review describes how lipidation and glycosylation are commonly used to increase AMPs' efficacy and engineer novel AMP-based delivery systems. The glycosylation of AMPs, which involves the conjugation of sugar moieties such as glucose and acetyl galactosamine, modulates their pharmacokinetic and pharmacodynamic properties, improves their antimicrobial activity, and reduces their interaction with mammalian cells, thereby increasing selectivity toward bacterial membranes. In the same way, lipidation of AMPs, which involves the covalent addition of fatty acids, has a significant impact on their therapeutic index by influencing their physicochemical properties and interaction with bacterial and mammalian membranes. This review highlights the possibility of using glycosylation and lipidation strategies to increase the efficacy and activity of conventional AMPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059750 | PMC |
http://dx.doi.org/10.3390/ph16030439 | DOI Listing |
Biomaterials
January 2025
144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. Electronic address:
The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.
View Article and Find Full Text PDFLife Metab
April 2024
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph.
View Article and Find Full Text PDFACS Cent Sci
January 2025
The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Harwell OX11 0FA, U.K.
Protein N-glycosylation is a cotranslational modification that takes place in the endoplasmic reticulum (ER). Disruption of this process can result in accumulation of misfolded proteins, known as ER stress. In response, the unfolded protein response (UPR) restores proteostasis or responds by controlling cellular fate, including increased expression of activating transcription factor 4 (ATF4) that can lead to apoptosis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:
Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul-02447, Republic of Korea.
Objective: This study evaluated the renoprotective effects of p-Coumaric acid nanoparticles (PCNPs) in nephropathic rats.
Methods: Six groups of male Albino Wistar rats were randomly assigned. Group 1 was the control, while Group 2 received 45 mg/kg of streptozotocin (STZ) to induce diabetic nephropathy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!