Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multi-target drug candidate BGP-15 has shown cardioprotective and antiarrhythmic actions in diseased models. Here, we investigated the effects of BGP-15 on ECG and echocardiographic parameters, heart rate variability (HRV), and arrhythmia incidence in telemetry-implanted rats, under beta-adrenergic stimulation by isoproterenol (ISO). In total, 40 rats were implanted with radiotelemetry transmitters. First, dose escalation studies (40-160 mg/kg BGP-15), ECG parameters, and 24 h HRV parameters were assessed. After, rats were divided into Control, Control+BGP-15, ISO, and ISO+BGP-15 subgroups for 2 weeks. ECG recordings were obtained from conscious rats, arrhythmias and HRV parameters were assessed, and echocardiography was carried out. ISO-BGP-15 interaction was also evaluated on an isolated canine cardiomyocyte model. BGP-15 had no observable effects on the ECG waveforms; however, it decreased heart rate. HRV monitoring showed that BGP-15 increased RMSSD, SD1, and HF% parameters. BGP-15 failed to counteract 1 mg/kg ISO-induced tachycardia, but diminished the ECG of ischemia and suppressed ventricular arrhythmia incidence. Under echocardiography, after low-dose ISO injection, BGP-15 administration lowered HR and atrial velocities, and increased end-diastolic volume and ventricle relaxation, but did not counteract the positive inotropic effects of ISO. Two weeks of BGP-15 treatment also improved diastolic function in ISO-treated rats. In isolated cardiomyocytes, BGP-15 prevented 100 nM ISO-induced aftercontractions. Here, we show that BGP-15 increases vagally mediated HRV, reduces arrhythmogenesis, enhances left ventricle relaxation, and suppresses the aftercontractions of cardiomyocytes. As the drug is well tolerated, it may have a clinical value in preventing fatal arrhythmias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056898 | PMC |
http://dx.doi.org/10.3390/ph16030359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!