Green tea is harvested from the tea plant and is one of the most widely consumed beverages worldwide. It is richer in antioxidants than other forms of tea and has a uniquely high content of polyphenolic compounds known as catechins. Epigallocatechin-3-gallate (EGCG), the major green tea catechin, has been studied for its potential therapeutic role in many disease contexts, including pathologies of the female reproductive system. As both a prooxidant and antioxidant, EGCG can modulate many cellular pathways important to disease pathogenesis and thus has clinical benefits. This review provides a synopsis of the current knowledge on the beneficial effects of green tea in benign gynecological disorders. Green tea alleviates symptom severity in uterine fibroids and improves endometriosis through anti-fibrotic, anti-angiogenic, and pro-apoptotic mechanisms. Additionally, it can reduce uterine contractility and improve the generalized hyperalgesia associated with dysmenorrhea and adenomyosis. Although its role in infertility is controversial, EGCG can be used as a symptomatic treatment for menopause, where it decreases weight gain and osteoporosis, as well as for polycystic ovary syndrome (PCOS).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054707 | PMC |
http://dx.doi.org/10.3390/nu15061439 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
This study explores the effect of risk factors on the progression of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) to α-synucleinopathies in a Chinese cohort. Patients with iRBD were enrolled and assessed for environmental factors and lifestyle using standardized structured questionnaires at baseline. All patients were prospectively followed for phenoconversion monitoring.
View Article and Find Full Text PDFLuminescence
January 2025
College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
It is of great significance to develop sensors for trace pesticide residues detection in food. Herein, an electrochemiluminescence (ECL) sensor with high sensitivity for the detection of methyl parathion (MP) was constructed by combining of the acetylcholinesterase (AChE) enzyme-inhibited reaction with tris-2,2'-bipyridyl ruthenium Ru(bpy) -triethylamine (TEA) system for the first time. A new ECL probe of MIL-100 loaded with Ru(bpy) (Ru-MIL-100) was synthesized, and then Ru-MIL-100 and AChE were immobilized on the electrode with Nafion.
View Article and Find Full Text PDFFront Microbiol
December 2024
University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia.
Cureus
December 2024
Pharmaceutical Biotechnology and Microbiology, Vidya Herbs USA, Bunnell, USA.
Purple tea ( var. ) is a distinct variety of known for its bioactive compounds, including caffeine, catechins, and a unique compound called 1,2-di-Galloyl-4,6-Hexahydroxydiphenoyl-β-D-Glucose, (GHG) found predominantly in purple tea leaves, which shows potential in obesity management. Studies have indicated that these bioactive compounds play a significant role in reducing BMI and body weight among obese patients.
View Article and Find Full Text PDFBioact Mater
March 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.
Despite significant advances in targeted therapies and immunotherapies, non-small cell lung cancer (NSCLC) continues to present a global health challenge, with a modest five-year survival rate of 28 %, largely due to the emergence of treatment-resistant and metastatic tumors. In response, we synthesized a novel bioactive compound, ethyl 6-chlorocoumarin-3-carboxylyl L-theanine (TClC), which significantly inhibited NSCLC growth, epithelial mesenchymal transition (EMT), migration, and invasion and tumor growth and metastasis without inducing toxicity. TClC disrupts autocrine loops that promote tumor progression, particularly in stem-like CD133-positive NSCLC (CD133+ LC) cells, which are pivotal in tumor metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!