Nowadays, there is an extensive production and use of plastic materials for different industrial activities. These plastics, either from their primary production sources or through their own degradation processes, can contaminate ecosystems with micro- and nanoplastics. Once in the aquatic environment, these microplastics can be the basis for the adsorption of chemical pollutants, favoring that these chemical pollutants disperse more quickly in the environment and can affect living beings. Due to the lack of information on adsorption, three machine learning models (random forest, support vector machine, and artificial neural network) were developed to predict different microplastic/water partition coefficients (log ) using two different approximations (based on the number of input variables). The best-selected machine learning models present, in general, correlation coefficients above 0.92 in the query phase, which indicates that these types of models could be used for the rapid estimation of the absorption of organic contaminants on microplastics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051191 | PMC |
http://dx.doi.org/10.3390/nano13061061 | DOI Listing |
BMC Bioinformatics
December 2024
College of Computer and Information Engineering/College of Artificial Intelligence, Nanjing Tech University, Nanjing, 210093, China.
Background: The collection of substantial amounts of electroencephalogram (EEG) data is typically time-consuming and labor-intensive, which adversely impacts the development of decoding models with strong generalizability, particularly when the available data is limited. Utilizing sufficient EEG data from other subjects to aid in modeling the target subject presents a potential solution, commonly referred to as domain adaptation. Most current domain adaptation techniques for EEG decoding primarily focus on learning shared feature representations through domain alignment strategies.
View Article and Find Full Text PDFCommun Med (Lond)
December 2024
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
Background: Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]).
View Article and Find Full Text PDFSci Rep
December 2024
Aschaffenburg University of Applied Sciences, Faculty of Engineering, Aschaffenburg, 63743, Germany.
Design of experiments (DOE) is an established method to allocate resources for efficient parameter space exploration. Model based active learning (AL) data sampling strategies have shown potential for further optimization. This paper introduces a workflow for conducting DOE comparative studies using automated machine learning.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Infrastructure, The University of Melbourne, Melbourne, Australia.
Healthy ageing plays an important role in ageing societies in many countries, and centenarians are a sign of longevity. Longevity and its determinants have become issues of global concern and also a focus of research. Although many disciplines have conducted out a series of studies on longevity phenomena, few studies have systematically considered the impact of geographical environmental factors.
View Article and Find Full Text PDFSci Rep
December 2024
Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
In the last decade, grating-based phase-contrast computed tomography (gbPC-CT) has received growing interest. It provides additional information about the refractive index decrement in the sample. This signal shows an increased soft-tissue contrast.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!