Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and create mixed-matrix membrane (MMMs) with improved properties and hydrophilicity by adding titanium dioxide (TiO) and pore-forming agents to hydrophobic polyvinylidene fluoride (PVDF). The PVDF mixed-matrix ultrafiltration membranes in this study were made using the non-solvent phase inversion approach which is a simple and effective method for increasing the hydrophilic nature of membranes. Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as pore-forming chemicals were created. Pure water flux, BSA flux, and BSA rejection were calculated to evaluate the mixed-matrix membrane's efficiency. Bovine serum albumin (BSA) solution was employed in this study to examine the protein rejection ability. Increases in hydrophilicity, viscosity, and flux in pure water and BSA solution were achieved using PVP and PEG additives. The PVDF membrane's hydrophilicity was raised with the addition of TiO, showing an increased contact angle to 71°. The results show that the PVDF-PVP-TiO membrane achieved its optimum water flux of 97 L/(mh) while the PVDF-PEG-TiO membrane rejected BSA at a rate greater than 97%. The findings demonstrate that use of a support or additive improved filtration performance compared to a pristine polymeric membrane by increasing its hydrophilicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057082PMC
http://dx.doi.org/10.3390/nano13061023DOI Listing

Publication Analysis

Top Keywords

mixed-matrix membrane
8
pvp peg
8
peg pore-forming
8
pore-forming agents
8
bsa rejection
8
polymeric membranes
8
pure water
8
water flux
8
flux bsa
8
bsa solution
8

Similar Publications

Segmented polymers, such as polyether block amide (PEBA), exhibit unique properties due to the combination of different segments. PEBA consists of soft polyester and rigid polyamide blocks, enabling its use in various industrial applications, including membrane technologies. In this study, PEBA membranes modified with a holmium-based metal-organic framework (Ho-1,3,5-Hbtc) were developed for enhanced pervaporation separation of water/isopropanol and water/phenol mixtures.

View Article and Find Full Text PDF

Polymeric membranes have emerged as a versatile and efficient liquid separation technology, addressing the growing demand for sustainable, high-performance separation processes in various industrial sectors. This review offers an in-depth analysis of recent developments in polymeric membrane technology, focusing on materials' advancements, innovative fabrication methods, and strategies for improving performance. We discuss the underlying principles of membrane separation, selecting suitable polymers, and integrating novel materials, such as mixed-matrix and composite membranes, to enhance selectivity, permeability, and antifouling properties.

View Article and Find Full Text PDF

Porous coordination polymers with excellent molecular sieving ability, high dispersibility, and good compatibility with engineered polymer matrices hold promise for various industrial applications, such as gas separation and battery separators. Here, an in situ defect engineering approach is proposed for highly processable cobalt (Co)-based zeolitic imidazolate frameworks (ZIFs) with enhanced molecular sieving ability and water stability. By varying alkylamine (AA) modulators, the pore structures and textural properties of ZIFs can be fine-tuned.

View Article and Find Full Text PDF

Directly Gel-Thermal Processing of Linker-Mixed Crystal-Glass Composite Membranes for Sorption-Preferential Gas Separation.

Adv Sci (Weinh)

December 2024

College of Environment and Climate, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou, 511443, China.

Membrane processes are promising for energy-saving industrial applications. However, efficient separation for some valuable gas mixtures with similar characteristics, such as CH/N and O/N, remains extremely challenging. Metal-organic framework (MOF) membranes have been attracting intensive attention for gas sieving, but it is difficult to manufacture MOF membranes in scalability and precisely tune their transport property.

View Article and Find Full Text PDF

Polymer-MOF Network Enabling Ultrathin Coating for Post-Combustion Carbon Capture.

Angew Chem Int Ed Engl

December 2024

Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.

Permeance-selectivity trade-off and high temperature resilience are key challenges in development of membranes for post-combustion carbon capture. While mixed matrix membranes (MMMs) consisting of polymers and metal-organic frameworks (MOFs) offer the potential to address the challenges, they are limited by the low loading of MOFs in the thin film layer. Herein, we propose an inverse synthesis strategy to form polymer-MOF networks by copolymerizing monomers with functionalized UiO-66 nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!