In this study, the allelopathic properties of L. (alfalfa) seedling exudates on the germination of seeds of various species were investigated. The compounds responsible for the allelopathic effects of alfalfa were identified and characterized by employing liquid chromatography ion mobility high-resolution mass spectrometry. Crude exudates inhibited the germination of seeds of all various plant species tested. Overall, nine compounds in alfalfa were identified and quantified. The most predominant compounds were a hyperoside representing a flavonoid glucoside, the non-proteinogenic amino acid canavanine, and two dipeptides, identified as H-Glu-Tyr-OH and H-Phe-Glu-OH. The latter corresponds to the first finding that dipeptides are exuded from alfalfa seedlings. In addition, the antibacterial and antibiofilm activities of alfalfa exudate and its identified compounds were elucidated. Both hyperoside and canavanine revealed the best antibacterial activity with minimum inhibitory concentration (MIC) values that ranged from 8 to 32 and 32 to 256 µg/mL, respectively. Regarding the antibiofilm action, hyperoside and canavanine caused a decline in the percentage of isolates that possessed a strong and moderate biofilm-forming potential from 68.42% to 21.05% and 31.58%, respectively. Studies on their inhibiting effects exhibit that these major substances are predominantly responsible for the allelopathic and antimicrobial effects of the crude exudates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056293 | PMC |
http://dx.doi.org/10.3390/molecules28062645 | DOI Listing |
Mater Today Bio
February 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China.
Periodontal disease stands the leading cause of tooth loss in adults. While scaling and root planning is considered the "gold standard" treatment, it is often insufficient in efficiently eliminating anaerobic bacteria from deep periodontal pockets. In this work, an antibiotic-free and photo-curing hyaluronic acid-Janus (H-Janus) antibacterial pack was developed to inhibit the growth and colonization of residual bacteria within the pockets for reducing the recurrence of periodontitis.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador, Department of Chemistry, 60700 Nador, Morocco, Nador, 60700, Nador, MOROCCO.
In recent years, Imidazothiazole-Chalcone conjugates have emerged as notable pharmacophores with potential applications in discovering biologically active compounds. This study focuses on synthesizing novel imidazo[2,1-b]thiazole chalcone derivatives through a facile and conventional process adhering to several principles of green chemistry, facilitating scalable production. The synthesized compounds underwent comprehensive spectroscopic analysis, including 1H NMR, 13C NMR, LC-MS, and FT-IR techniques.
View Article and Find Full Text PDFVirulence
December 2025
Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China.
The increasing incidence of infections attributed to hypervirulent carbapenem-resistant (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp NUHL30457 strain that possesses a K2 capsule serotype.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department Medical Laboratory Technology, College of Medical Technology, University of Al-Farahidi, Baghdad, Iraq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!