When the total phenolic content (TPC) and antioxidant activity of sea buckthorn juice were assayed by spectrophotometry, the reaction solutions were not clarified, so centrifugation or membrane treatment was needed before determination. In order to find a suitable method for determining TPC and antioxidant activity, the effects of centrifugation and nylon membrane treatment on the determination of TPC and antioxidant activity in sea buckthorn juice were studied. TPC was determined by the Folin-Ciocalteau method, and antioxidant activity was determined by DPPH, ABTS, and FRAP assays. For Treatment Method (C): the sample was centrifuged for 10 min at 10,000 rpm and the supernatant was taken for analysis. Method (CF): The sample was centrifuged for 10 min at 4000 rpm, filtered by Nylon 66 filtration membranes with pore size of 0.22 μm, and taken for analysis. Method (F): the sample was filtered by Nylon 66 filtration membranes with pore size of 0.22 μm and taken for analysis. Method (N): after the sample of ultrasonic extract solution reacted completely with the assay system, the reaction solution was filtered by Nylon 66 filtration membranes with pore size of 0.22 μm and colorimetric determination was performed. The results showed that centrifugation or transmembrane treatment could affect the determination of TPC and antioxidant activity of sea buckthorn juice. There was no significant difference ( > 0.05) between methods (CF) and (F), while there was a significant difference ( < 0.05) between methods (C) (F) (N) or (C) (CF) (N). The TPC and antioxidant activity of sea buckthorn juice determined by the four treatment methods showed the same trend with fermentation time, and the TPC and antioxidant activity showed a significant positive correlation ( < 0.05). The highest TPC or antioxidant activity measured by method (N) indicates that method (N) has the least loss of TPC or antioxidant activity, and it is recommended for sample assays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056822 | PMC |
http://dx.doi.org/10.3390/molecules28062446 | DOI Listing |
Background: Pycnanthus angolensis (Welw) Warb., Myristicaceae, is used extensively in ethnomedicine. Numerous health benefits have being ascribed to the use of different parts of P.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Edith Cowan University, Perth, Western Australia, Australia.
Background: Accumulation of amyloid beta 42 (Aβ42) senile plaques is the most critical event leading to Alzheimer's disease (AD). Currently approved drugs for AD have not been able to effectively modify the disease. This has caused increasing research interests in health beneficial nutritious plant foods as viable alternative therapy to prevent or manage AD.
View Article and Find Full Text PDFBackground: Several studies have shown the influential role of nutraceuticals on cognition and mental functions. Dihydroxytrimethoxyflavone, a natural flavone found in herbal drugs, is documented to be neuroprotective in different model systems. Nevertheless, possible memory improvement effects of dihydroxytrimethoxyflavone via nuclear factor-E2-related factor 2 (Nrf2) (a crucial regulator of antioxidative system) has not been systematically evaluated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
Background: The present study recapitulates the potency of the novel synthesized piperazine-benzoquinone derivative as a lead molecule selectively targeting AChE along with the antioxidative potential for the management of cognitive decline in Alzheimer's disease.
Method: Novel piperazine-benzoquinone derivative was synthesized implementing appropriate synthetic procedures and was characterized by various spectral and elemental techniques. The purity of this synthetic analogue was ascertained by TLC, melting point determination and elemental analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!