1,3-propanediol (1,3-PDO) is a valuable basic chemical, especially in the polymer industry to produce polytrimethylene terephthalate. Unfortunately, the production of 1,3-PDO mainly depends on petroleum products as precursors. Furthermore, the chemical routes have significant disadvantages, such as environmental issues. An alternative is the biobased fermentation of 1,3-PDO from cheap glycerol. DSM 6423 was originally reported to produce 1,3-PDO. However, this could not be confirmed, and a genome analysis revealed the loss of an essential gene. Thus, 1,3-PDO production was genetically reinstalled. Genes for 1,3-PDO production from DSM 525 and DSM 15410 (formerly ) were introduced into DSM 6423 to enable 1,3-PDO production from glycerol. 1,3-PDO production by recombinant strains were investigated under different growth conditions. 1,3-PDO production was only observed for [pMTL83251_P_1,3-PDO.diolis], which harbors the genes of DSM 15410. By buffering the growth medium, production could be increased by 74%. Furthermore, the effect of four different promoters was analyzed. The use of the constitutive promoter from led to a 167% increase in 1,3-PDO production compared to the initial recombinant approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054281 | PMC |
http://dx.doi.org/10.3390/microorganisms11030784 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland.
Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.
View Article and Find Full Text PDFCroat Med J
December 2024
Marijan Klarica, Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3b, 10000 Zagreb, Croatia,
It is generally accepted that intraocular pressure (IOP) depends on the rate of aqueous humor production, system outflow resistance, and episcleral venous pressure. Therefore, control IOP values are expected to be within the strict and predictable limits in specific animal species, and there should be no vast differences between species. However, in the literature the control IOP values significantly vary (from potentially "hypotensive" to "hypertensive") within the same species, and especially between species depending on the measurement technique, head position in relation to the rest of the body, circadian rhythm, age, and topical and systemic drugs (anesthetics) applied.
View Article and Find Full Text PDFOrg Lett
January 2025
Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
Radical-initiated functionalization of bicyclo[1.1.0]butanes (BCBs) is a straightforward approach to accessing diverse cyclobutane derivatives.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland.
In the dyotropic rearrangement of molecules with semiflexible structures, characterized by a freely rotating static C-C bond, the formation of a mixture of products is common due to the coexistence of several energetically comparable conformers. Herein, we report that it is possible to modulate the shifting groups by adjusting the metal's coordination sphere in Pd-based dyotropic rearrangement. In the presence of a catalytic amount of Pd(II) salt, the reaction of γ-hydroxyalkenes or γ,δ-dihydroxyalkenes with Selectfluor affords fluorinated tetrahydropyranols or 6,8-dioxabicyclo[3.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Riverside, California 92521-0403, United States.
Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!