The biosynthesis of nanoparticles using green technology is emerging as a cost-efficient, eco-friendly and risk-free strategy in nanotechnology. Recently, tellurium nanoparticles (TeNPs) have attracted growing attention due to their unique properties in biomedicine, electronics, and other industrial applications. The current investigation addresses the green synthesis of TeNPs using a newly isolated mangrove-associated bacterium, sp. TNPM15, and their impact on the phytopathogenic fungi and . The biogenic TeNPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared (FTIR). The results of TEM revealed the intracellular biosynthesis of rod-shaped nanostructures with a diameter range from 15 to 23 nm and different lengths reaching up to 243 nm. Furthermore, the successful formation of tellurium nanorods was verified by SEM-EDX, and the XRD pattern revealed their crystallinity. In addition, the FTIR spectrum provided evidence for the presence of proteinaceous capping agents. The bioinspired TeNPs exhibited obvious inhibitory effect on the spores of both investigated phytopathogens accomplished with prominent ultrastructure alternations, as evidenced by TEM observations. The biogenic TeNPs impeded spore germination of and completely at 48.1 and 27.6 µg/mL, respectively. Furthermore, an increase in DNA and protein leakage was observed upon exposure of fungal spores to the biogenic TeNPs, indicating the disruption of membrane permeability and integrity. Besides their potent influence on fungal spores, the biogenic TeNPs demonstrated remarkable inhibitory effects on the production of various plant cell wall-degrading enzymes. Moreover, the cytotoxicity investigations revealed the biocompatibility of the as-prepared biogenic TeNPs and their low toxicity against the human skin fibroblast (HSF) cell line. The biogenic TeNPs showed no significant cytotoxic effect towards HSF cells at concentrations up to 80 μg/mL, with a half-maximal inhibitory concentration (IC) value of 125 μg/mL. The present work spotlights the antifungal potential of the biogenic TeNPs produced by marine bacterium against phytopathogenic fungi as a promising candidate to combat fungal infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053417 | PMC |
http://dx.doi.org/10.3390/microorganisms11030558 | DOI Listing |
Microorganisms
February 2023
Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
The biosynthesis of nanoparticles using green technology is emerging as a cost-efficient, eco-friendly and risk-free strategy in nanotechnology. Recently, tellurium nanoparticles (TeNPs) have attracted growing attention due to their unique properties in biomedicine, electronics, and other industrial applications. The current investigation addresses the green synthesis of TeNPs using a newly isolated mangrove-associated bacterium, sp.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
August 2022
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok, Russia, 690022.
Selenium (SeNPs) and tellurium nanoparticles (TeNPs) were synthesized by green technology using the three new bacterial marine isolates (strains PL 2476, AF 2469 and G 2451). Isolates were classified as Pseudoalteromonas shioyasakiensis according to 16S rRNA sequence analysis, morphological characteristics, and biochemical reactions. The bioreduction processes of isolates were studied in comparison with the previously described Alteromonas macleodii (strain 2328).
View Article and Find Full Text PDFSci Total Environ
September 2022
Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. Electronic address:
Nanotechnology-driven solutions have almost touched every aspect of life, such as therapeutics, cosmetics, agriculture, and the environment. Physical and chemical methods for the synthesis of nanoparticles involve hazardous reaction conditions and toxic reducing as well as stabilizing agents. Hence, environmentally benign green routes are preferred to synthesize nanoparticles with tunable size and shape.
View Article and Find Full Text PDFJ Chromatogr A
April 2021
Trace Element Speciation Laboratories, Dept. of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom; Institute of Chemistry, Environmental Analytical Chemistry, University of Graz, 8010 Graz, Austria. Electronic address:
Aureobasidium pullulans was grown in liquid culture media amended with selenite and tellurite and selenium (Se) and tellurium (Te) nanoparticles (NPs) were recovered after 30 d incubation. A separation method was applied to recover and characterise Se and Te NPs by asymmetric flow field flow fractionation (AF4) with online coupling to multi-angle light scattering (MALS), ultraviolet visible spectroscopy (UV-Vis), and inductively coupled plasma mass spectrometry (ICP-MS) detectors. Additional characterisation data was obtained from transmission electron microscopy (TEM), and dynamic light scattering (DLS).
View Article and Find Full Text PDFInt J Mol Sci
January 2021
School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador.
The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!