It is becoming quite evident that, when it comes to the further scaling of advanced node transistors, increasing the flash memory storage capacity, and enabling the on-chip integration of multiple functionalities, "there's plenty of room at the top". The fabrication of vertical, three-dimensional features as enablers of these advanced technologies in semiconductor devices is commonly achieved using plasma etching. Of the available plasma chemistries, SF/O is one of the most frequently applied. Therefore, having a predictive model for this process is indispensable in the design cycle of semiconductor devices. In this work, we implement a physical SF/O plasma etching model which is based on Langmuir adsorption and is calibrated and validated to published equipment parameters. The model is implemented in a broadly applicable in-house process simulator ViennaPS, which includes Monte Carlo ray tracing and a level set-based surface description. We then use the model to study the impact of the mask geometry on the feature profile, when etching through circular and rectangular mask openings. The resulting dimensions of a cylindrical hole or trench can vary greatly due to variations in mask properties, such as its etch rate, taper angle, faceting, and thickness. The peak depth for both the etched cylindrical hole and trench occurs when the mask is tapered at about 0.5°, and this peak shifts towards higher angles in the case of high passivation effects during the etch. The minimum bowing occurs at the peak depth, and it increases with an increasing taper angle. For thin-mask faceting, it is observed that the maximum depth increases with an increasing taper angle, without a significant variation between thin masks. Bowing is observed to be at a maximum when the mask taper angle is between 15° and 20°. Finally, the mask etch rate variation, describing the etching of different mask materials, shows that, when a significant portion of the mask is etched away, there is a notable increase in vertical etching and a decrease in bowing. Ultimately, the implemented model and framework are useful for providing a guideline for mask design rules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058362 | PMC |
http://dx.doi.org/10.3390/mi14030665 | DOI Listing |
Nat Protoc
January 2025
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy.
Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes.
View Article and Find Full Text PDFClin Implant Dent Relat Res
February 2025
Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.
Objectives: This study evaluated different designs of the conical implant-abutment connection (IAC) and their resistance to microgap formation under oblique loads as specified by the ISO standard for testing dental implants. Also evaluated was the effect of deviations from the ISO specifications on the outcomes.
Methods: Finite element analysis was conducted to compare the microgap formation and stress distribution among three conical IAC designs (A, B, and C) in two loading configurations: one compliant with ISO 14801 and one with a modified load adaptor (non-ISO).
Clin Ophthalmol
January 2025
Harvard Eye Associates, Laguna Hills, CA, USA.
Purpose: To assess real-world efficacy and safety of standalone travoprost intracameral implant (iDose TR) implantation by a US glaucoma surgeon in patients with open-angle glaucoma (OAG) or ocular hypertension (OHT).
Methods: This non-randomized, retrospective, unmasked, consecutive case series included all cases of standalone iDose TR implantation from a single US glaucoma surgeon since the product's approval by the US Food and Drug Administration (FDA) in December 2023. Patients were pseudophakic, had OAG or OHT, and had undergone prior SLT and/or bimatoprost intracameral implant injection (Durysta).
We present both experimental and simulation results for a fully etched, C-band GC fabricated in an 800 nm silicon nitride platform that significantly reduces backreflections. They are minimized by truncating the initial grates, which deflect reflected light at an oblique angle and excite higher-order modes in the tapered waveguide that is filtered out. Insertion losses resulting from this modification of the grating coupler are mitigated by an adaptive redesign of the grates that corrects incurred errors in the generated phase front.
View Article and Find Full Text PDFCureus
December 2024
Department of Prosthodontics, Graduate School of Dentistry, Showa University, Tokyo, JPN.
Purpose: This study aims to evaluate the effects of taper angle and the number of insertion-removal cycles on the retention force of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) double crowns over time.
Materials And Methods: Primary and secondary crowns were fabricated using 4Y-PSZ with taper angles of 2°, 4°, and 6° (n=15). Retention force during crown removal was measured after applying 50-N and 100-N loads.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!