Microneedles are gaining a lot of attention in the context of sampling cutaneous biofluids such as capillary blood. Their minimal invasiveness and user-friendliness make them a prominent substitute for venous puncture or finger-pricking. Although the latter is suitable for self-sampling, the impracticality of manual handling and the difficulty of obtaining enough qualitative sample is driving the search for better solutions. In this context, hollow microneedle arrays (HMNAs) are particularly interesting for completely integrating sample-to-answer solutions as they create a duct between the skin and the sampling device. However, the fabrication of sharp-tipped HMNAs with a high aspect ratio (AR) is challenging, especially since a length of ≥1500 μm is desired to reach the blood capillaries. In this paper, we first described a novel two-step fabrication protocol for HMNAs in stainless steel by percussion laser drilling and subsequent micro-milling. The HMNAs were then integrated into a self-powered microfluidic sampling patch, containing a capillary pump which was optimized to generate negative pressure differences up to 40.9 ± 1.8 kPa. The sampling patch was validated in vitro, showing the feasibility of sampling 40 μL of liquid. It is anticipated that our proof-of-concept is a starting point for more sophisticated all-in-one biofluid sampling and point-of-care testing systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052199 | PMC |
http://dx.doi.org/10.3390/mi14030615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!