Multi-Channel MEMS-FAIMS Gas Sensor for VOCs Detection.

Micromachines (Basel)

State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China.

Published: March 2023

Aimed at the problems of a large equipment size, long time and high price of environmental VOC gas detection, the FAIMS-VOC gas sensor was designed and prepared according to the principle that the ionization energy of the common VOC gas is less than 10.6 eV. The sensor is small in size, fast in detection, low in power consumption, and can work continuously. The sensor was fabricated through the MEMS process, a specific process which included photolithography, etching, anodic bonding, etc. The sensor is 5160 μm long, 5300 μm wide and 800 μm high. We built a test system to detect two typical VOC gases: isobutylene and acetone. The results show that in the detection of isobutylene gas and acetone gas, the sensor voltage value changes with the change of gas concentration. The linearity of testing isobutylene is 0.961, and the linearity of testing acetone is 0.987. When the isobutylene gas concentration is 50 ppm, the response time is 8 s and the recovery time is 6 s; when the acetone gas concentration is 50 ppm, the response time is 9 s and the recovery time is 10 s. In addition, the sensor demonstrates good repeatability and stability, which are conducive to the detection of VOCs in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053954PMC
http://dx.doi.org/10.3390/mi14030608DOI Listing

Publication Analysis

Top Keywords

gas sensor
12
gas concentration
12
gas
9
voc gas
8
isobutylene gas
8
acetone gas
8
linearity testing
8
concentration ppm
8
ppm response
8
response time
8

Similar Publications

Nanogenerators for gas sensing applications.

Front Chem

January 2025

Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.

Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.

View Article and Find Full Text PDF

Coal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.

View Article and Find Full Text PDF

Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors.

View Article and Find Full Text PDF

Lead Phosphate Material for Exclusive Detection of Hydrogen Sulfide Gas.

ACS Sens

January 2025

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China.

Efficient gas sensors that can accurately detect and identify hydrogen sulfide are essential for various practical applications. Conventional resistive sensors often lack the necessary selectivity, which hampers timely and effective HS detection. This study presents lead phosphate-based gas sensors specifically designed for HS detection, which effectively eliminate interference effects.

View Article and Find Full Text PDF

Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!