Arguably, 5G and next-generation technology with its key features (specifically, supporting high data rates and high mobility platforms) make it valuable for coping with the emerging needs of medical healthcare. A 5G-enabled portable device receives the sensitive detection signals from the head imaging system and transmits them over the 5G network for real-time monitoring, analysis, and storage purposes. In terms of material, graphene-based flexible electronics have become very popular for wearable and healthcare devices due to their exceptional mechanical strength, thermal stability, high electrical conductivity, and biocompatibility. A graphene-based flexible antenna for data communication from wearable head imaging devices over a 5G network was designed and modelled. The antenna operated at the 34.5 GHz range and was designed using an 18 µm thin graphene film for the conductive radiative patch and ground with electric conductivity of 3.5 × 10 S/m. The radiative patch was designed in a fractal fashion to provide sufficient antenna flexibility for wearable uses. The patch was designed over a 1.5 mm thick flexible polyamide substrate that made the design suitable for wearable applications. This paper presented the 3D modelling and analysis of the 5G flexible antenna for communication in a digital care-home model. The analyses were carried out based on the antenna's reflection coefficient, gain, radiation pattern, and power balance. The time-domain signal analysis was carried out between the two antennas to mimic real-time communication in wearable devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056467 | PMC |
http://dx.doi.org/10.3390/mi14030610 | DOI Listing |
Sensors (Basel)
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Small Methods
January 2025
NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, I-56127, Italy.
A ground-breaking graphene-based biosensor designed for label-free detection of immunoglobulin M (IgM) achieving a remarkable concentration of 100 zeptomolar (10 m), is reported. The sensor is a two-terminal device and incorporates a millimeter-wide gold interface, bio-functionalized with ≈10 anti-IgM antibodies and capacitively coupled to a bare graphene electrode through a water-soaked paper strip. In this configuration, few affinity binding events trigger a collective electrostatic reorganization of the protein layer, leading to an extended surface potential (SP) shift of the biofunctionalized Au surface.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
Numerous studies have focused on graphene owing to its potential as a next-generation electronic material, considering its high conductivity, transparency, superior mechanical stiffness, and flexibility. However, cost-effective mass production of graphene-based electronics based on existing fabrication methods, such as graphene transfer and metal formation, remains a challenge. This study proposes a simple and efficient method for creating electrical contacts with graphene.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Electrical Engineering, École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada.
The importance of gas sensors is apparent as the detection of gases and pollutants is crucial for environmental monitoring and human safety. Gas sensing devices also hold the potential for medical applications as health monitoring and disease diagnostic tools. Gas sensors fabricated from graphene-based fibers present a promising advancement in the field of sensing technology due to their enhanced sensitivity and selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!