Bacterial biofilm is a three-dimensional matrix composed of a large number of living bacterial individuals. The strong bio-interaction between the bacteria and its self-secreted matrix environment strengthens the mechanical integrity of the biofilm and the sustainable resistance of bacteria to antibiotics. As a soft surface, the biofilm is expected to present different dynamical wetting behavior in response to shear stress, which is, however, less known. Here, the spreading of liquid droplet on biofilm at its different growing phases was experimentally investigated. Due to the viscoelastic response of the biofilm to fast spreading of the droplet, three stages were identified as inertial, viscous stages, and a longer transition in between. The physical heterogeneity of growing biofilm correlates with the spreading scaling within the inertial stage, followed by the possible chemical variation after a critical growing time. By using the duration of inertial spreading, the characteristic time scale was successfully linked to the shear modulus of the elastic dissipation of the biofilm. This measurement suggests a facile, non-destructive and in vivo method to understand the mechanical instability of this living matter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055872 | PMC |
http://dx.doi.org/10.3390/mi14030599 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.
View Article and Find Full Text PDFmBio
January 2025
Antimicrobial Resistance, Omics and Microbiota Group, Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
is an unusual diderm firmicute that plays a central role in the formation of dental biofilm formation through coaggregation with many other oral bacteria. However, the molecular interactions leading to oral biofilm formation are largely unknown. In a recent study (L.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Postgraduate Program in Animal Science in the Tropics - Federal University of Bahia, Salvador, Bahia, Brazil.
Leptospirosis is a zoonotic disease caused by bacteria, affecting humans and a broad range of wild and domestic animals in diverse epidemiological settings (rural, urban, and wild). The disease's pathogenesis and epidemiology are complex networks not fully elucidated. Epidemiology reflects the One Health integrated approach of environment-animal-human interaction, causing severe illness in humans and animals, with consequent public health burdens.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy.
Introduction: Chronic non-healing wounds have emerged as a significant global healthcare challenge. Biofilm induced wound infections has been widely acknowledged. Despite the advanced understanding of biofilm formation, the existing approaches for diagnosing biofilms in wounds remain considerably suboptimal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!