Photoacoustic flow cytometry is a method to detect rare analytes in fluids. We developed photoacoustic flow cytometry to detect pathological cells in body fluids, such as circulating tumor cells or bacteria in blood. In order to induce specific optical absorption in bacteria, we use modified bacteriophage that precisely target bacterial species or subspecies for rapid identification. In order to reduce detection variability and to halt the lytic lifescycle that results in lysis of the bacteria, we attached dyed latex microspheres to the tail fibers of bacteriophage that retained the bacterial recognition binding sites. We tested these microsphere complexes using () and () bacteria and found robust and specific detection of targeted bacteria. In our work we used LT2, a strain of , against K12, a strain of . Using Det7, a bacteriophage that binds to LT2 and not to K12, we detected an average of 109.3±9.0 of LT2 versus 2.0±1.7 of K12 using red microspheres and 86.7±13.2 of LT2 versus 0.3±0.6 of K12 using blue microspheres. These results confirmed our ability to selectively detect bacterial species using photoacoustic flow cytometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057399 | PMC |
http://dx.doi.org/10.3390/mi14030573 | DOI Listing |
Anal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA.
Obesity and associated metabolic disturbances worsen brain ischemia outcome. High fat diet (HFD)-fed mice are obese and have cerebrovascular remodeling and worsened brain ischemia outcome. We determined whether HFD-induced cerebrovascular remodeling impaired reperfusion to the ischemic penumbra.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
A highly sensitive sulfur dioxide (SO) photoacoustic gas sensor was developed for the sulfur hexafluoride (SF) decomposition detection in electric power systems by using a novel 266 nm low-cost high-power solid-state pulse laser and a high -factor differential photoacoustic cell. The ultraviolet (UV) pulse laser is based on a passive -switching technology with a high output power of 28 mW. The photoacoustic signal was normalized to the laser power to solve the fluctuation of the photoacoustic signal due to the power instability of the UV laser.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
Combination immune checkpoint inhibitors (nivolumab and ipilimumab) are currently a first-line treatment for mesothelioma; however, not all patients respond. The efficacy of treatment is influenced by the tumor microenvironment. Murine mesothelioma tumors were irritated with various radiotherapy doses.
View Article and Find Full Text PDFIn Vivo
December 2024
School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia.
Background/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!