Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The counter-electrode (CE) material in electrochemical metallization memory (ECM) cells plays a crucial role in the switching process by affecting the reactions at the CE/electrolyte interface. This is due to the different electrocatalytic activity of the CE material towards reduction-oxidation reactions, which determines the metal ion concentration in the electrolyte and ultimately impacts the switching kinetics. In this study, the focus is laid on Pt, TiN, and W, which are relevant in standard chip technology. For these, the influence of CE metal on the switching kinetics of Ag/HfO-based volatile ECM cells is investigated. Rectangular voltage pulses of different amplitudes were applied, and the SET times were analyzed from the transient curves. The results show that CE material has a significant effect on the SET kinetics, with differences being observed depending on the voltage regime. The formation of interfacial oxides at the CE/electrolyte interface, particularly for non-noble metals, is also discussed in relation to the findings. Overall, this work highlights the important role of the CE material in the switching process of Ag/HfO-based diffusive memristors and the importance of considering interfacial oxide formation in the design of these devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060002 | PMC |
http://dx.doi.org/10.3390/mi14030571 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!