Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, the layer-wise : fine-grained sparse neural network algorithm (i.e., every -weights contains non-zero values) has attracted tremendous attention, as it can effectively reduce the computational complexity with negligible accuracy loss. However, the speed-up potential of this algorithm will not be fully exploited if the right hardware support is lacking. In this work, we design an efficient accelerator for the : sparse convolutional neural networks (CNNs) with layer-wise sparse patterns. First, we analyze the performances of different processing element (PE) structures and extensions to construct the flexible PE architecture. Second, the variable sparse convolutional dimensions and sparse ratios are involved in the hardware design. With a sparse PE cluster (SPEC) design, the hardware can efficiently accelerate CNNs with the layer-wise : pattern. Finally, we employ the proposed SPEC into the CNN accelerator with flexible network-on-chip and specially designed dataflow. We implement hardware accelerators on Xilinx ZCU102 FPGA and Xilinx VCU118 FPGA and evaluate them with classical CNNs such as Alexnet, VGG-16, and ResNet-50. Compared with existing accelerators designed for structured and unstructured pruned networks, our design achieves the best performance in terms of power efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057003 | PMC |
http://dx.doi.org/10.3390/mi14030528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!