The inborn errors of metabolism (IEMs or Inherited Metabolic Disorders) are a heterogeneous group of diseases caused by a deficit of some specific metabolic pathways. IEMs may present with multiple overlapping symptoms, sometimes difficult delayed diagnosis and postponed therapies. Additionally, many IEMs are not covered in newborn screening and the diagnostic profiling in the metabolic laboratory is indispensable to reach a correct diagnosis. In recent years, Metabolomics helped to obtain a better understanding of pathogenesis and pathophysiology of IEMs, by validating diagnostic biomarkers, discovering new specific metabolic patterns and new IEMs itself. The expansion of Metabolomics in clinical biochemistry and laboratory medicine has brought these approaches in clinical practice as part of newborn screenings, as an exam for differential diagnosis between IEMs, and evaluation of metabolites in follow up as markers of severity or therapies efficacy. Lastly, several research groups are trying to profile metabolomics data in platforms to have a holistic vision of the metabolic, proteomic and genomic pathways of every single patient. In 2018 this team has made a review of literature to understand the value of Metabolomics in IEMs. Our review offers an update on use and perspectives of metabolomics in IEMs, with an overview of the studies available from 2018 to 2022.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058105 | PMC |
http://dx.doi.org/10.3390/metabo13030447 | DOI Listing |
Arch Orthop Trauma Surg
January 2025
Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria.
Introduction: Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms.
Materials And Methods: A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma.
Sci Immunol
January 2025
Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
January 2025
Department of Endocrinology, the First Medical Center of Chinese PLA General Hospital, Beijing100039, China.
Mol Genet Metab
December 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong, China.
The 3-methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of inborn errors of metabolism defined biochemically by detectable elevation of 3-methylglutaconic acid (3-MGA) in the urine. In type 1 (or primary) 3-MGA-uria, distal defects in the leucine catabolism pathway directly cause this elevation. Secondary 3-MGA-uria syndromes, however, are unrelated to leucine metabolism-specific defects but share a common biochemical phenotype of elevated 3-MGA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!