Porous glasses (PGs) obtained from sodium borosilicate (NBS) phase-separated glasses via leaching are promising inorganic membranes. Introducing FeO into NBS glasses imparts ferrimagnetic properties due to magnetite crystallization. Leaching of such glasses leads to the formation of magnetic PGs with interesting electro-surface characteristics. This work aimed to investigate the process of obtaining magnetite-containing PGs from NBS glasses depending on silica content, using XRPD and Raman spectroscopy, studying the PG membranes' structural characteristics and their sorption properties with respect to methylene blue (MB). Obtained PGs were characterized by a polymodal distribution of mesopores and a small number of micropores with specific surface area values of 32-135 m/g and an average mesopore diameter of 5-41 nm. The kinetic data were analyzed using pseudo-first-order, pseudo-second-order, and intra-particle diffusion equations. The equilibrium isotherms were fitted with Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. MB adsorption was found to be a complex process. The glass with the highest specific surface area demonstrated the maximum sorption capacity (10.5 mg/g). The pore size of PGs allowed them to be considered potential novel magnetic membranes for ultrafiltration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057932PMC
http://dx.doi.org/10.3390/membranes13030341DOI Listing

Publication Analysis

Top Keywords

inorganic membranes
8
porous glasses
8
sorption properties
8
nbs glasses
8
specific surface
8
surface area
8
glasses
6
pgs
5
novel inorganic
4
membranes based
4

Similar Publications

Green Synthesis of Cellulose Acetate Mixed Matrix Membranes: Structure-Function Characterization.

ACS Sustain Chem Eng

January 2025

Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain.

Although membrane technology is widely used in different gas separation applications, membrane manufacturers need to reduce the environmental impact during the membrane fabrication process within the framework of the circular economy by replacing toxic solvents, oil-based polymers, and such by more sustainable alternatives. These include environmentally friendly materials, such as biopolymers, green solvents, and surfactant free porous fillers. This work promotes the use of environmentally sustainable and low toxic alternatives, introducing the novel application of cellulose acetate (CA) as a biopolymer in combination with dimethyl carbonate (DMC) as a greener solvent and different inorganic fillers (Zeolite-A, ETS-10, AM-4 and ZIF-8) prepared without the use of toxic solvents or reactants.

View Article and Find Full Text PDF

PdNi Trimer Sites Drive Efficient and Durable Hydrogen Oxidation in Alkaline Media.

J Am Chem Soc

January 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Anion-exchange membrane fuel cell (AEMFC) is a cost-effective hydrogen-to-electricity conversion technology under a zero-emission scenario. However, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) impedes the commercial implementation of AEMFCs. Here, we develop a Pd single-atom-embedded NiN catalyst (Pd/NiN) with unconventional PdNi trimer sites to drive efficient and durable HOR in alkaline media.

View Article and Find Full Text PDF

Mitigating cadmium stress in rice (Oryza sativa L.) using succinic and oxalic acids with focus on cellular integrity and antioxidant responses.

Plant Physiol Biochem

January 2025

Department of Environmental Sciences, Government College University Allama Iqbal Road, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan. Electronic address:

Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as succinic acid (SA) and oxalic acid (OA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a pot experiment to assess the impact of SA (0.

View Article and Find Full Text PDF

A leaf-like structured membrane for highly efficient and persistent radiative cooling.

Mater Horiz

January 2025

Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.

Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges.

View Article and Find Full Text PDF

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!