Performance Study of Lightweight Insulating Mortar Reinforced with Straw Fiber.

Materials (Basel)

The Fifth Exploration Team of Shandong Coalfield Geology Bureau, Jinan 250100, China.

Published: March 2023

The current research aimed to develop lightweight, environmentally friendly mortar materials using crop straw fibers with better insulation properties. The lightweight mortar samples were tested for moisture content, thermal conductivity and compressive strength on days 3, 7 and 28, respectively. Scanning electron tomography (SEM) was performed on the fiber-matrix bonding interface and internal fiber structure. The permeability rating was also measured to check the impermeability of the lightweight fiber mortar. Due to the high hygroscopicity of plant fibers, the thermal conductivity of the mortar was high at the initial molding stage; the thermal conductivity measured at day 28 decreased with increasing fiber content, while the mechanical properties gradually decreased. The impermeability test showed that the straw fiber mortar had better impermeability than the standard mortar. However, with the addition of 2% of 10 mm long fibers, we increased the compressive strength and thermal insulation properties. Numerical simulations verified that the fiber insulation mortar has good thermal insulation properties in high-temperature tunnels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058426PMC
http://dx.doi.org/10.3390/ma16062266DOI Listing

Publication Analysis

Top Keywords

insulation properties
12
thermal conductivity
12
mortar
8
straw fiber
8
compressive strength
8
fiber mortar
8
mortar high
8
thermal insulation
8
fiber
6
thermal
5

Similar Publications

The dielectric properties of polymers play a pivotal role in the development of advanced materials for energy storage, electronics, and insulation. This review comprehensively explores the critical relationship between polymer chain conformation, nanostructure, and dielectric properties, focusing on parameters such as dielectric constant, dielectric loss, and dielectric breakdown strength. It highlights how factors like chain rigidity, free volume, molecular alignment, and interfacial effects significantly influence dielectric performance.

View Article and Find Full Text PDF

Development of a Fire-Retardant and Sound-Insulating Composite Functional Sealant.

Materials (Basel)

December 2024

School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler system consisting of carbon nanotubes (CNTs) decorated with layered double hydroxides (LDHs), ammonium dihydrogen phosphate (ADP), and artificial marble waste powder (AMWP), namely CLAA.

View Article and Find Full Text PDF

The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.

View Article and Find Full Text PDF

In order to increase the thermal conductivity of neat epoxy resin and broaden its practical application in high-voltage insulation systems, we have constructed four kinds of epoxy resin nanocomposite models (a neat epoxy resin (EP), a graphene-doped epoxy resin nanocomposite (EP/GR) and hydroxyl- or carboxyl-functionalized graphene-doped epoxy resin nanocomposites (EP/GR-OH or EP/GR-COOH)) to systematically investigate their thermodynamic and electrical properties using molecular dynamics (MD) simulations. Compared with the EP model, carboxyl-functionalized graphene particles enhanced the thermal conductivity of the EP/GR-COOH model by 66.5% and increased its by 26.

View Article and Find Full Text PDF

Thermal and sound insulation play a vital role in today's world, and nonwoven composite structures including microfiber layers provide efficient solutions for addressing these demands. In this study, the sound and thermal insulation properties of nonwoven composite structures, including single-layer meltblown, multilayer meltblown, hydroentangled, and nanofiber nonwoven inner layers, were compared statistically by using Design Expert 13 software. The inner layer type and outer layer type of the composite structures were considered as independent variables, and thickness, bulk density, air permeability, sound absorption coefficient, and thermal resistance of composite structures were evaluated as dependent variables during statistical analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!