Two variants of porcine reproductive and respiratory syndrome virus (PRRSV), PRRSV 1 and PRRSV 2, have caused abortion in pregnant sows and respiratory distress in nursery pigs worldwide. PRRSV 2 has been thoroughly researched in Taiwan since 1993; however, the first case of PRRSV 1 was not reported until late 2018. To decipher the genetic characteristics of PRRSV 1 in Taiwan, open reading frame 5 (ORF5) genes of PRRSV 1 strains collected from 11 individual pig farms in 2019-2020 were successfully sequenced. All Taiwanese ORF5 sequences were closely related to Spanish-like PRRSV strains, which are considered to share a common evolutionary origin with the strain used for the PRRSV 1 vaccine. Analyses of amino acid (aa) and non-synonymous substitutions showed that genetic variations resulted in numerously specific codon mutations scattered across the neutralizing epitopes within the ORF5 gene. The PRRSV 1 challenge experiment disclosed the pathogenetic capability of the NPUST2789 isolate in nursery pigs. These findings provide comprehensive knowledge of the molecular diversity of the PRRSV 1 variant in local Taiwanese fields and facilitate the development of suitable immunization programs against this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056585PMC
http://dx.doi.org/10.3390/life13030843DOI Listing

Publication Analysis

Top Keywords

prrsv
12
porcine reproductive
8
reproductive respiratory
8
respiratory syndrome
8
syndrome virus
8
virus prrsv
8
prrsv taiwan
8
prrsv prrsv
8
nursery pigs
8
prrsv strains
8

Similar Publications

Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:

Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.

View Article and Find Full Text PDF

RAP1 is essential for PRRSV replication and the synthesis of the viral genome.

Vet Microbiol

December 2024

Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Since its emergence, porcine reproductive and respiratory syndrome (PRRS) has caused enormous economic losses to the global swine industry. The pathogenesis of PRRS remains under investigation. The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in pigs and respiratory in piglets, which is a 15 kb RNA virus that encodes 16 viral proteins, most of which exhibit multiple functions during the virus lifecycle.

View Article and Find Full Text PDF

Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a syndrome characterized by reproductive failure and respiratory complications (PRRS). Early detection and classification of PRRSV strains are vital for appropriate management strategies to minimize loss following outbreaks. The most widely used classification method for PRRSV is based on open reading frame 5 (ORF5) sequences.

View Article and Find Full Text PDF

Construction and immunological evaluation of recombinant adenovirus vaccines of new novel NADC34-PRRSV strains in pigs.

Front Vet Sci

December 2024

Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China.

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive and respiratory diseases in sow herds and piglets. The emergence of ORF5 RFLP 1-7-4-like (NADC34-like) PRRSV strain in China has brought a new round of challenges to PRRSV prevention.

Methods: In addition, recombinant adenovirus vaccine candidates against the newly emerged NADC34-like strain were constructed in the study; the immunogenicity of the vaccine was investigated in piglets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!