Space missions with humans expose the crews to ionizing radiation, mainly due to the galactic cosmic radiation (GCR). All radiation protection programs in space aim to minimize crews' exposure to radiation. The radiation protection of astronauts can be achieved through the use of shields. The shields could serve as a suit to reduce GCR exposure and, in an emergency, as a radiation shelter to perform necessary interventions outside the space habitat in case of a solar proton event (SPE). A space radiation shielding that is suitable for exploration during space missions requires particular features and a proper knowledge of the radiation type. This study shows the results of numerical simulations performed with the Geant4 toolkit-based code DOSE. Calculations to evaluate the performance of Nomex, an aramidic fiber with high mechanical resistance, in terms of dose reduction to crews, were performed considering the interaction between protons with an energy spectrum ranging from 50 to 1100 MeV and a target slab of 20 g/cm. This paper shows the properties of secondary products obtained as a result of the interaction between space radiation and a Nomex target and the properties of the secondary particles that come out the shield. The results of this study show that Nomex can be considered a good shield candidate material in terms of dose reductions. We also note that the secondary particles that provide the greatest contribution to the dose are protons, neutrons and, in a very small percentage, α-particles and Li ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058850 | PMC |
http://dx.doi.org/10.3390/life13030790 | DOI Listing |
J Am Chem Soc
January 2025
Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
All-solid-state fluoride-ion batteries (FIBs) have attracted extensive attention as candidates for next-generation energy storage devices; however, promising cathodes with high energy density are still lacking. In this study, CuN is investigated as a cathode material for all-solid-state fluoride-ion batteries, which offers enough anionic vacancies around the 2-fold coordinated Cu center for F intercalation, thereby enabling a multielectron-transferred fluorination process. The contribution of both cationic and anionic redox to charge compensation, in particular, the generation of molecular nitrogen species in highly charged states, has been proved by several synchrotron-radiation-based spectroscopic technologies.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada.
The generation of interlayer charge transfer excitons upon photoexcitation is strongly desirable for two-dimensional (2D) materials stacked through van der Waals interactions. In this work, we investigate photoinduced charge transfer in silicanes (SiH) with three typical stackings. A concept of the regional natural hole orbital and its conjugated particle orbital is developed to characterize excited states in solids.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
Purpose: Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model.
Methods: Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light.
JAMA Intern Med
January 2025
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
Neurology
January 2025
Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!