Blood flow increases in arteries of the skeletal muscles involved in active work. Our aim was to investigate the gender differences as a result of adaptation to sport in the femoral arteries. Vascular reactivity and histology of animals were compared following a 12-week swimming training. Animals were divided into sedentary male (MS), trained male (MTr), sedentary female (FS), and trained female (FTr) groups. Isolated femoral artery rings were examined by wire myography. Contraction induced by phenylephrine (Phe) did not differ between the four groups. The contractile ability in the presence of indomethacin (INDO) was decreased in both sedentary groups. However, we found a specific cyclooxygenase-2 (COX-2) role only in FS rats. After exercise training, we observed increased vasoconstriction in both sexes, when nitro-L-arginine methyl ester (L-NAME) was present. The COX-dependent vasoconstriction effect disappeared in MTr animals, and the COX-2-dependent vasoconstriction effect disappeared in FTr ones. Relaxation was reduced significantly, when L-NAME was present in MTr animals compared to in FTr rats. The training was associated with greater endothelial nitric oxide synthase (eNOS) protein expression in males, but not in females. The present study proves that there are gender differences regarding adaptation mechanisms of musculocutaneous arteries to sports training. In males, relaxation reserve capacity was markedly elevated compared to in females.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058998 | PMC |
http://dx.doi.org/10.3390/life13030778 | DOI Listing |
J Vasc Surg Cases Innov Tech
February 2025
Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
A 52-year-old man with a short chronic total occlusion in the left superficial femoral artery underwent drug-coated balloon (DCB) angioplasty. Evaluation using integrated backscatter intravascular ultrasound revealed that the plaque volume of fibrosis was compressed just after treatment (from 494.67 mm to 398.
View Article and Find Full Text PDFJ Vasc Surg Cases Innov Tech
February 2025
Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
We report a case of a 75-year-old man diagnosed with Parkes-Weber syndrome with an infected common femoral artery aneurysm secondary to chronic venous ulcers and groin infection. Given the symptomatic and rapid enlargement of the aneurysm, emergency aneurysmectomy and crossover femoro-femoral bypass were performed with an omental flap routed intraluminally through the aneurysm of the ipsilateral external iliac artery. The transarterial route enabled the short-cutting of the omental flap and the potential prevention of infection in the adjacent external iliac artery.
View Article and Find Full Text PDFAnaesth Crit Care Pain Med
January 2025
Department of Anesthesia and Critical Care Medicine, Cairo University, Cairo, Egypt.
AJNR Am J Neuroradiol
January 2025
From the Department of Radiology (J.L., E.A.B., C.B., J.C., R.K., W.B., D.F.K), and Department of Neurologic Surgery (Y.C.S., R.K., W.B.), Mayo Clinic, Rochester, MN, United States; Department of Stroke Research (J.L.), Vall d'Hebron Research Institute, Barcelona, Spain; From the Global Institute of Future Technology (Y.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurointerventional Radiology (J.C.), Bicetre University Hospital, Le Kremlin Bicetre, France.
Background And Purpose: Proximal protection devices, such as TransCarotid Artery Revascularization (TCAR, SilkRoad Medical, Sunnyvale), aim to yield better outcomes in carotid artery stenting (CAS) than distal protection devices by preventing plaque embolization to the brain. However, transfemoral catheters may not fully reverse flow from the external carotid artery (ECA) to the internal carotid artery (ICA). We assess a new balloon-sheath device, Femoral Flow Reversal Access for Carotid Artery Stenting (FFRACAS), for this purpose.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!