AI Article Synopsis

  • DIPG has a very poor prognosis, with less than 10% of patients surviving two years despite radiation therapy.
  • Previous research indicates that DIPG cells are sensitive to low-intensity electric fields, prompting exploration of endoscopic endonasal implantation of electrode arrays for treatment.
  • The study at Boston Children's Hospital shows that the anatomy of pediatric patients is suitable for 94% of them to receive a 2 × 1 cm electrode array, suggesting that implantable devices for tumor-treating fields may be feasible as a new therapy for DIPG.

Article Abstract

Diffuse intrinsic pontine glioma (DIPG) carries an extremely poor prognosis, with 2-year survival rates of <10% despite the maximal radiation therapy. DIPG cells have previously been shown to be sensitive to low-intensity electric fields in vitro. Accordingly, we sought to determine if the endoscopic endonasal (EE) implantation of an electrode array in the clivus would be feasible for the application of tumor-treating fields (TTF) in DIPG. Anatomic constraints are the main limitation in pediatric EE approaches. In our Boston Children's Hospital's DIPG cohort, we measured the average intercarotid distance (1.68 ± 0.36 cm), clival width (1.62 ± 0.19 cm), and clival length from the base of the sella (1.43 ± 0.69 cm). Using a linear regression model, we found that only clival length and sphenoid pneumatization were significantly associated with age (R = 0.568, = 0.005 *; R = 0.605, = 0.0002 *). Critically, neither of these parameters represent limitations to the implantation of a device within the dimensions of those currently available. Our findings confirm that the anatomy present within this age group is amenable to the placement of a 2 × 1 cm electrode array in 94% of patients examined. Our work serves to demonstrate the feasibility of implantable transclival devices for the provision of TTFs as a novel adjunctive therapy for DIPG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059731PMC
http://dx.doi.org/10.3390/life13030601DOI Listing

Publication Analysis

Top Keywords

diffuse intrinsic
8
intrinsic pontine
8
positioning transclival
4
transclival tumor-treating
4
tumor-treating fields
4
fields treatment
4
treatment diffuse
4
pontine gliomas
4
gliomas diffuse
4
pontine glioma
4

Similar Publications

Spin Drag Mechanism of Giant Thermal Magnetoresistance.

Phys Rev Lett

December 2024

Department of Physics, University of Washington, Seattle, Washington 98195, USA.

We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.

View Article and Find Full Text PDF

Background: With substantial resources allocated to develop virtual reality (VR)-based rehabilitation exercise programs for poststroke motor rehabilitation, it is important to understand how patients with stroke perceive these technology-driven approaches, as their perceptions can determine acceptance and adherence.

Objective: This study aimed to examine the perceptions of patients with stroke regarding an immersive VR-based exercise system developed to deliver shoulder, elbow, forearm, wrist, and reaching exercises.

Methods: A questionnaire was used to assess the perceptions of 21 inpatients who had experienced stroke (mean time from stroke onset: 37.

View Article and Find Full Text PDF

The utilization of cobalt-based sulfides is constrained by their inherently low conductivity and slow sodium ion diffusion kinetics. Modifying the electronic configuration and constructing heterostructures are promising strategies to enhance intrinsic conductivity and expedite the sodium ion diffusion process. In this study, heterogeneous nanoparticles of Se-substituted CoS2/CoSe2, embedded within heteroatom-modified carbon nanosheet, were synthesized using metal molten salt-assisted dimensionality reduction alongside concurrent sulfurization and selenization techniques.

View Article and Find Full Text PDF

Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced.

View Article and Find Full Text PDF

A spatially constrained independent component analysis jointly informed by structural and functional network connectivity.

Netw Neurosci

December 2024

Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.

There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. The brain connectivity of different modalities provides an insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multimodal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!