Two new (, viz Rubracin D and E) and sixteen known Glyceroglycolipids (-) in the saprophytic fungus (PF02-2) from decaying wood in freshwater habitat were isolated and identified. Their chemical structures were elucidated via means of the extensive spectroscopic analyses of NMR, HR-ESI-MS and UV spectra, as well as comparison with literature data. The new compounds were assayed for the reversal activity of multidrug resistance (MDR) on MCF-7/ADM, K562/ADM and A549/ADM cell lines, and both compounds and reversed MDR in the three resistant cancer cell lines with concentration dependence. In the assay on K562/ADM, both new compounds had been proved to have remarkable MDR reversal effects, which were higher than those of the positive control viz Verapamil (Vrp). Meanwhile, in the assay on A549/ADM, compound displayed significant MDR reversal effects, which were also higher than those of Vrp at certain concentrations. Furthermore, the Western blot assay proved that both new compounds reversed the MDR in the resistant cancer cell line viz MCF-7/ADM by inhibiting the overexpression of P-glycoprotein. This is the first report that the Glyceroglycolipids isolated firstly from the fungal genus reversed MDR in resistant cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058889 | PMC |
http://dx.doi.org/10.3390/jof9030309 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Xinjiang Phytomedicine Resource and Uilization, Ministry of Education, Shihezi 832002, China.
belongs to the family Euphorbiaceae and is widely distributed in northern Xinjiang, making it a characteristic plant of the region in Xinjiang, China. The chemical composition and biological activity of have not yet been reported, although certain compounds isolated from plants in Xinjiang, China, have demonstrated exceptional multidrug resistance (MDR) reversal. This study aims to investigate the chemical components present in with the potential to reverse MDR.
View Article and Find Full Text PDFBMC Cancer
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China.
Background: ABCB1 overexpression is a key factor in causing multidrug resistance (MDR). As a result, it is crucial to discover effective medications against ABCB1 to overcome MDR. Falnidamol, a tyrosine kinase inhibitor (TKI) targeting the epidermal growth factor receptor (EGFR), is currently in phase 1 clinical trials for the treatment of solid tumors.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.
The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!