Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051989 | PMC |
http://dx.doi.org/10.3390/ijms24065945 | DOI Listing |
Nucl Med Biol
December 2024
Molecular Imaging Laboratory, Division of Preeminent Bioimaging Research, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan. Electronic address:
Introduction: Intranasal (IN) administration, often referred to as nose-to-brain (N2B) drug delivery, is an attractive approach for delivering drugs to the central nervous system. However, the efficacy of this method is limited because of the small size of the nasal olfactory region, which limits the drug dosage. Using permeation enhancers could improve drug delivery from this region to the brain, though their effects are not fully understood.
View Article and Find Full Text PDFNeuropsychopharmacology
September 2024
Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
Schizophrenia is a neuropsychiatric disorder with postulated neurodevelopmental etiology. Genetic and imaging studies have shown enhanced dopamine and D2 receptor occupancy in the striatum of patients with schizophrenia. However, whether alterations in postnatal striatal dopamine can lead to long-lasting changes in brain function and behavior is still unclear.
View Article and Find Full Text PDFClin Pharmacol Ther
August 2024
Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA.
Nonracemic amisulpride (SEP-4199) is an investigational 85:15 ratio of aramisulpride to esamisulpride and currently in clinical trials for the treatment of bipolar depression. During testing of SEP-4199, a pharmacokinetic/pharmacodynamic (PK/PD) disconnect was discovered that prompted the development of a controlled-release (CR) formulation with improved therapeutic index for QT prolongation. Observations that supported the development of a CR formulation included (i) plasma concentrations of amisulpride enantiomers were cleared within 24-hours, but brain dopamine D2 receptor (D2R) occupancies, although achieving stable levels during this time, required 5 days to return to baseline; (ii) nonracemic amisulpride administered to non-human primates produced significantly greater D2R occupancies during a gradual 6-hour administration compared with a single bolus; (iii) concentration-occupancy curves were left-shifted in humans when nonracemic amisulpride was gradually administered over 3 and 6 hours compared with immediate delivery; (iv) CR solid oral dose formulations of nonracemic amisulpride were able to slow drug dissolution in vitro and reduce peak plasma exposures in vivo in human subjects.
View Article and Find Full Text PDFMol Psychiatry
August 2023
Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany.
Antipsychotic drugs differ in their propensity to cause extrapyramidal side-effects (EPS), but their dose-effects are unclear. Therefore, we conducted a systematic review and dose-response meta-analysis. We searched multiple electronic databases up to 20.
View Article and Find Full Text PDFJ Control Release
July 2023
R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima 891-1394, Japan. Electronic address:
The nose-to-brain (N2B) pathway has garnered attention because it transports drugs directly into the brain. Although recent studies have suggested the necessity of selective drug administration to the olfactory region for effective N2B drug delivery, the importance of delivering the formulation to the olfactory region and the detailed pathway involved in drug uptake in primates brain remain unclear. Here, we developed a combination system for N2B drug delivery comprising a proprietary mucoadhesive powder formulation and a dedicated nasal device (N2B-system) and evaluated it for nasal drug delivery to the brain in cynomolgus monkeys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!