Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients. We have isolated and fully characterized small extracellular vesicles (EVs) from seven patient-derived GBM cell lines. After loading them with two different drugs, Temozolomide (TMZ) and EPZ015666, we observed a reduction in the total amount of drugs needed to trigger an effect on tumor cells. Moreover, we observed that GBM-derived small EVs, although with lower target specificity, can induce an effect on pancreatic cancer cell death. These results suggest that GBM-derived small EVs represent a promising drug delivery tool for further preclinical studies and potentially for the clinical development of GBM treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054028 | PMC |
http://dx.doi.org/10.3390/ijms24065910 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
National Heart & Lung Institute, Imperial College London, Airway Disease Section, London, United Kingdom of Great Britain and Northern Ireland.
Chronic obstructive pulmonary disease (COPD) is associated with the acceleration of lung aging, and the accumulation of senescent cells in lung tissue. MicroRNA (miR)-34a induces senescence by suppressing the anti-aging molecule, sirtuin-1 (SIRT1). Senescent cells spread senescence to neighbouring and distant cells, favouring COPD progression and its comorbidities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Pathology, University of California San Diego, La Jolla, CA 92093.
We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China. Electronic address:
Membrane bioreactors (MBRs) can effectively remove microplastics (MPs) because of their good rejection performance. However, the influence of MP concentration and particle size on the short-term and long-term operation efficiency of MBRs remains unclear. To address this issue, this study investigated the effects of short-term stress and long-term accumulation of polypropylene microplastics (PP-MPs) with different particle sizes on the operational efficiency of MBRs by running three MBR systems at four concentration stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!