The interpretation of F-DOPA PET/CT performed for assessing nigrostriatal dysfunction (NSD) is usually based on visual assessment of the uptake in the basal ganglia (VA-BG). In the present study, we evaluate the diagnostic performance of an automated method that assesses BG uptake (AM-BG) and of methods that assess pineal body uptake, and examine whether these methods can enhance the diagnostic performance of VA-BG alone. We retrospectively included 112 scans performed in patients with clinically suspected NSD who also had a subsequent final clinical diagnosis provided by a movement disorder specialist (69 NSD and 43 non-NSD patients). All scans were categorized as positive or negative based on (1) VA-BG, (2) AM-BG, and (3) qualitative and semiquantitative assessment of pineal body uptake. VA-BG, AM-BG, assessment of pineal body F-DOPA uptake by VA (uptake > background), by SUVmax (≥0.72), and by pineal to occipital ratio (POR ≥ 1.57) could all significantly differentiate NSD from non-NSD patients (Pv < 0.01 for all five methods). Of these methods, VA-BG provided the highest sensitivity (88.4%) and accuracy (90.2%). Combining VA-BG with AM-BG did not improve diagnostic accuracy. An interpretation algorithm that combines VA-BG with pineal body uptake assessment by POR calculation increased sensitivity to 98.5%, at the expense of decreased specificity. In conclusion, an automated method that assesses F-DOPA uptake in the BG and assessment of pineal body F-DOPA uptake can significantly separate NSD from non-NSD patients, with apparent inferior diagnostic performance when applied alone compared with VA-BG. When VA-BG categorizes a scan as negative or equivocal, assessment of the F-DOPA uptake in the pineal body has the potential to minimize the rate of false negative reports. Further research is essential to validate this approach and to study the pathophysiologic relationship between F-DOPA uptake in the pineal body and nigrostriatal dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056028 | PMC |
http://dx.doi.org/10.3390/ijms24065683 | DOI Listing |
PLoS One
January 2025
Laboratory of Developmental Biology, Department of Morphology and Genetics-Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil.
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.
View Article and Find Full Text PDFVitam Horm
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:
Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.
View Article and Find Full Text PDFReprod Sci
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Melatonin is mainly synthesized and secreted by pineal gland, and plays multiple functions, including its regulating effects on reproductive processes. Sperm capacitation is necessary for fertilization, but the effect of melatonin on mouse sperm capacitation remains to be elucidated. We thus investigated the roles of melatonin on capacitation by culturing the sperms from mouse cauda epididymis in the medium with different doses of melatonin.
View Article and Find Full Text PDFPigment Cell Melanoma Res
January 2025
Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!