Knowing the molecular makeup of an organ system is required for its in-depth understanding. We analyzed the molecular repertoire of the adult tracheal system of the fruit fly using transcriptome studies to advance our knowledge of the adult insect tracheal system. Comparing this to the larval tracheal system revealed several major differences that likely influence organ function. During the transition from larval to adult tracheal system, a shift in the expression of genes responsible for the formation of cuticular structure occurs. This change in transcript composition manifests in the physical properties of cuticular structures of the adult trachea. Enhanced tonic activation of the immune system is observed in the adult trachea, which encompasses the increased expression of antimicrobial peptides. In addition, modulatory processes are conspicuous, in this case mainly by the increased expression of G protein-coupled receptors in the adult trachea. Finally, all components of a peripheral circadian clock are present in the adult tracheal system, which is not the case in the larval tracheal system. Comparative analysis of driver lines targeting the adult tracheal system revealed that even the canonical tracheal driver line () is not able to target all parts of the adult tracheal system. Here, we have uncovered a specific transcriptome pattern of the adult tracheal system and provide this dataset as a basis for further analyses of the adult insect tracheal system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052349PMC
http://dx.doi.org/10.3390/ijms24065628DOI Listing

Publication Analysis

Top Keywords

tracheal system
40
adult tracheal
24
adult
12
tracheal
12
larval tracheal
12
system
12
adult trachea
12
adult insect
8
insect tracheal
8
system revealed
8

Similar Publications

Venous thromboembolic disease remains a leading cause of maternal morbidity and mortality. We report a case of a 30-year-old woman at 37 gestation with a history of thalassaemia intermedia and splenectomy. During pregnancy, she had been managed with frequent blood transfusions and enoxaparin.

View Article and Find Full Text PDF

Oxygen transport across the lifespan of male Sprague Dawley rats.

Biogerontology

January 2025

Song Biotechnologies LLC., Baltimore, MD, 21030, USA.

Human populations are experiencing unprecedented growth and longevity with lingering knowledge gaps of the characteristics, mechanisms, and pathologies of senescence. Invasive measurements and long-term control conditions for longitudinal studies are infeasible, necessitating the need for surrogate animal models. Rats have short lifespans (2-3 years) with translatable cardiovascular systems, and Sprague Dawley microcirculatory preparations are key to studying the oxygen transport mechanisms critical to the loss of skeletal muscle function in aging.

View Article and Find Full Text PDF

Background: Despite numerous genetic studies on Infectious Bronchitis Virus (IBV), many strains from the Middle East remain misclassified or unclassified. Genotype 1 (GI-1) is found globally, while genotype 23 (GI-23) has emerged as the predominant genotype in the Middle East region, evolving continuously through inter- and intra-genotypic recombination. The GI-23 genotype is now enzootic in Europe and Asia.

View Article and Find Full Text PDF

Background: Previously, a depth of anesthesia bispectral index (BIS™) <45 was considered lowand found to have no clinical benefit. A BIS <35 was considered very low and was not only without evident clinical benefit but also associated with a greater risk of postoperative delirium. We considered the association between BIS and the anesthetic dose of inhalational agents, quantified using the minimum alveolar concentration (MAC) fraction, which was the patient's end-tidal inhalational agent concentration divided by the agent's altitude- and age-adjusted minimum alveolar percentage concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!