Deep brain stimulation (DBS)-through a surgically implanted electrode to the subthalamic nucleus (STN)-has become a widely used therapeutic option for the treatment of Parkinson's disease and other neurological disorders. The standard conventional high-frequency stimulation (HF) that is currently used has several drawbacks. To overcome the limitations of HF, researchers have been developing closed-loop and demand-controlled, adaptive stimulation protocols wherein the amount of current that is delivered is turned on and off in real-time in accordance with a biophysical signal. Computational modeling of DBS in neural network models is an increasingly important tool in the development of new protocols that aid researchers in animal and clinical studies. In this computational study, we seek to implement a novel technique of DBS where we stimulate the STN in an adaptive fashion using the interspike time of the neurons to control stimulation. Our results show that our protocol eliminates bursts in the synchronized bursting neuronal activity of the STN, which is hypothesized to cause the failure of thalamocortical neurons (TC) to respond properly to excitatory cortical inputs. Further, we are able to significantly decrease the TC relay errors, representing potential therapeutics for Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053455 | PMC |
http://dx.doi.org/10.3390/ijms24065555 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Geriatric Medicine, Royal Free Hospital, London, UK.
Parkinson's disease (PD) is a common neurodegenerative condition that can lead to problems swallowing. Individuals living with PD may be unable to take medications orally for various reasons including acute or chronic dysphagia, non-PD related causes and being placed nil-by-mouth for elective reasons. This article outlines a five-step approach to managing an individual living with PD who is unable to take oral medication acutely.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.
Objective and continuous monitoring of Parkinson's disease (PD) tremor in free-living conditions could benefit both individual patient care and clinical trials, by overcoming the snapshot nature of clinical assessments. To enable robust detection of tremor in the context of limited amounts of labeled training data, we propose to use prototypical networks, which can embed domain expertise about the heterogeneous tremor and non-tremor sub-classes. We evaluated our approach using data from the Parkinson@Home Validation study, including 8 PD patients with tremor, 16 PD patients without tremor, and 24 age-matched controls.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy.
Parkinson's disease (PD) is characterized by a slow, short-stepping, shuffling gait pattern caused by a combination of motor control limitations due to a reduction in dopaminergic neurons. Gait disorders are indicators of global health, cognitive status, and risk of falls and increase with disease progression. Therefore, the use of quantitative information on the gait mechanisms of PD patients is a promising approach, particularly for monitoring gait disorders and potentially informing therapeutic interventions, though it is not yet a well-established tool for early diagnosis or direct assessment of disease progression.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Medical Specialities I, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
Neurogenic orthostatic hypotension (NOH) is a significant non-motor manifestation of Parkinson's disease (PD), that substantially affects patient disability and has a powerful impact on the quality of life of PD patients, while also contributing to increased healthcare costs. This narrative review aims to summarize key insights into the diagnosis and management of NOH in individuals with PD. For diagnosing NOH, a recently introduced and valuable metric is the ΔHr/ΔSBP index.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!