Metabolic Study of Cucumber Seeds and Seedlings in the Light of the New, Controversial Trend of Preventive Use of Systemic Fungicides.

Int J Mol Sci

Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland.

Published: March 2023

Cucumber is one of the most commonly produced vegetable crops. The greatest economic losses in the yields of these crops have resulted from fungal infections-powdery mildew and downy mildew. The action of fungicides not only affects the fungi, but can also lead to metabolic disorders in plants. However, some fungicides have been reported to have positive physiological effects. Our research focused on the action of two commercially available fungicides, Scorpion 325 SC and Magnicur Finito 687,5 SC, on plant metabolism. Two approaches were used to check the effect of the fungicides at the early stage of plant development when metabolic changes occur most dynamically: spraying on the leaves of cucumber seedlings and presowing seed treatment. The application of the fungicide formulation as a presowing seed treatment caused perturbations in the phytase activity, leading to disorders in the energetic status of the germinating seeds. In addition, the tested preparations changed the morphology of the germinating seeds, limiting the growth of the stem. Furthermore, the application of the tested fungicides on seedlings also showed a disruption in the energetic status and in the antioxidative system. Therefore, the use of pesticides as agents causes a "green effect" and requires a much deeper understanding of plant metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057123PMC
http://dx.doi.org/10.3390/ijms24065554DOI Listing

Publication Analysis

Top Keywords

plant metabolism
8
presowing seed
8
seed treatment
8
energetic status
8
germinating seeds
8
fungicides
6
metabolic study
4
study cucumber
4
cucumber seeds
4
seeds seedlings
4

Similar Publications

Saffron (Crocus sativus L.) has held significant cultural and medicinal value since the Greek-Minoan civilization. As a triploid spice with vegetative propagation from the Iridaceae family, the three-branch style of C.

View Article and Find Full Text PDF

Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.

View Article and Find Full Text PDF

Exploring Tetraselmis chui microbiomes-functional metagenomics for novel catalases and superoxide dismutases.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.

The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.

View Article and Find Full Text PDF

Effect of the Starchy Legume Source on the In Vitro Fermentation of the Fecal Microbiota from Normal-Weight and Obese Individuals.

Plant Foods Hum Nutr

January 2025

Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.

The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.

View Article and Find Full Text PDF

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!