AI Article Synopsis

  • * The study revealed that depleting HSPGs in melanoma cells made them more sensitive to certain chemotherapy drugs, significantly increasing their effectiveness.
  • * Results indicated that the lack of HSPGs activated certain signaling pathways, particularly involving JNK, which not only enhanced drug sensitivity but also increased the cells' migratory ability, highlighting EXT1 as a potential tumor suppressor.

Article Abstract

Heparan sulfate proteoglycans (HSPGs) possess various functions driving malignancy of tumors. However, their impact on tumor cell sensitivity to cytotoxic treatment is far less understood. Aiming to investigate this, we depleted HSPGs by downregulating Exostosin 1 (EXT1), a key enzyme in HS formation, or upregulating heparanase in human MV3 human melanoma cells, and investigated their response to cytotoxic drugs. Cytotoxicity of trametinib, doxorubicin, and mitoxantrone was detected by MTT assay. Insights into intracellular signaling was provided by kinome protein profiler array, and selected kinases were inhibited to investigate their impact on cell sensitization and migratory dynamics. EXT1 knockdown (EXT1kd) in MV3 cells affected the activity of doxorubicin and mitoxantrone, significantly increasing EC values two- or fourfold, respectively. Resistance formation was scarcely related to HSPG deficiency, suggested by enzymatic cleavage of HSPG in control cells. Notably, EXT1kd induced an upregulation of EGFR signaling via JNK and MEK/ERK, and hence blocking these kinases returned resistance to a sensitive level. JNK appeared as a key signal component, also inducing higher migratory activity of EXT1kd cells. Furthermore, EXT1kd upregulated thrombotic properties of MV3 cells, indicated by tissue factor and PAR-1 expression, functionally reflected by a stronger activation of platelet aggregation. EXT1 was confirmed to act as a tumor suppressor, shown here for the first time to affect chemosensitivity of melanoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049486PMC
http://dx.doi.org/10.3390/ijms24065452DOI Listing

Publication Analysis

Top Keywords

melanoma cells
12
jnk mek/erk
8
doxorubicin mitoxantrone
8
mv3 cells
8
cells
7
exostosin knockdown
4
knockdown induces
4
induces chemoresistance
4
mv3
4
chemoresistance mv3
4

Similar Publications

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment but can give rise to immune-related adverse events such as ICI-related diabetes mellitus (DM).

Case Presentation: We herein present the case of a 59-year-old Japanese man with malignant melanoma who developed ICI-related DM after 18 months of nivolumab treatment. He experienced marked hyperglycemia and diabetic ketoacidosis without a personal or family history of diabetes.

View Article and Find Full Text PDF

Purpose: Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines.

View Article and Find Full Text PDF

The dysregulation of matrix metalloproteinases (MMPs) in skin cutaneous melanoma (SKCM) represents a critical aspect of tumorigenesis. In this study, we investigated the diagnostic, prognostic, and therapeutic aspects of the MMPs in SKCM. Thirteen SKCM cell lines and seven normal skin cell lines were cultured under standard conditions for experimental analyses.

View Article and Find Full Text PDF

Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value.

Arch Dermatol Res

January 2025

Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India.

The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers.

View Article and Find Full Text PDF

Occurrence of degenerative interactions is thought to serve as a mechanism underlying hybrid unfitness in most animal systems. However, the molecular mechanisms underpinning the genetic interaction and how they contribute to overall hybrid incompatibilities are limited to only a handful of examples. A vertebrate model organism, Xiphophorus, is used to study hybrid dysfunction, and it has been shown from this model that diseases, such as melanoma, can occur in certain interspecies hybrids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!