Wheat allergies are potentially life-threatening and, therefore, have become a major health concern at the global level. It is largely unknown at present whether genetic variation in allergenicity potential exists among hexaploid, tetraploid and diploid wheat species. Such information is critical in establishing a baseline allergenicity map to inform breeding efforts to identify hyper-, hypo- and non-allergenic varieties. We recently reported a novel mouse model of intrinsic allergenicity using the salt-soluble protein extract (SSPE) from durum, a tetraploid wheat (). Here, we validated the model for three other wheat species [hexaploid common wheat () diploid einkorn wheat (), and the ancient diploid wheat progenitor, ], and then tested the hypothesis that the SSPEs from wheat species will exhibit differences in relative allergenicities. Balb/c mice were repeatedly exposed to SSPEs via the skin. Allergic sensitization potential was assessed by specific (s) IgE antibody responses. Oral anaphylaxis was quantified by the hypothermic shock response (HSR). The mucosal mast cell response (MMCR) was determined by measuring mast cell protease in the blood. While elicited the least, but significant, sensitization, others were comparable. Whereas elicited the least HSR, the other three elicited much higher HSRs. Similarly, while elicited the least MMCR, the other wheats elicited much higher MMCR as well. In conclusion, this pre-clinical comparative mapping strategy may be used to identify potentially hyper-, hypo- and non-allergenic wheat varieties via crossbreeding and genetic engineering methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051541 | PMC |
http://dx.doi.org/10.3390/ijms24065453 | DOI Listing |
Int J Mol Sci
December 2024
Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of metabolites in inhibiting growth and development and controlling sunflower sclerotinia rot disease.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia.
Plants are frequently challenged by a variety of microorganisms. To protect themselves against harmful invaders, they have evolved highly effective defense mechanisms, including the synthesis of numerous types of antimicrobial peptides (AMPs). Snakins are such compounds, encoded by the (Gibberellic Acid-Stimulated Arabidopsis) gene family, and are involved in the response to biotic and abiotic stress.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
Drought is a detrimental abiotic stress that severely limits wheat growth and productivity worldwide by altering several physiological processes. Thus, understanding the mechanisms of drought tolerance is essential for the selection of drought-resilient features and drought-tolerant cultivars for wheat breeding programs. This exploratory study evaluated 14 wheat genotypes (13 relatively tolerant, one susceptible) for drought endurance based on flag leaf physiological and biochemical traits during the critical grain-filling stage in the field conditions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018, China.
Stripe rust, induced by f. sp. (), is one of the most destructive fungal diseases of wheat worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!