A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Correlation of Dengue and Meteorological Factors in Bangladesh: A Public Health Concern. | LitMetric

AI Article Synopsis

  • Dengue virus (DENV) is a significant public health concern in Bangladesh, driven by climate change, dense population, and geographical factors, leading to severe outbreaks.
  • The study utilized various statistical and time series models to analyze the correlation between meteorological factors (like dew point, humidity, and rainfall) and Dengue cases, indicating some meteorological parameters do affect the incidence of Dengue.
  • Findings revealed that while factors like wind speed, temperature, and surface pressure showed no strong correlation with Dengue cases, dew point, humidity, and rainfall displayed statistically significant relationships.

Article Abstract

Dengue virus (DENV) is an enveloped, single-stranded RNA virus, a member of the family (which causes Dengue fever), and an arthropod-transmitted human viral infection. Bangladesh is well known for having some of Asia's most vulnerable Dengue outbreaks, with climate change, its location, and it's dense population serving as the main contributors. For speculation about DENV outbreak characteristics, it is crucial to determine how meteorological factors correlate with the number of cases. This study used five time series models to observe the trend and forecast Dengue cases. Current data-based research has also applied four statistical models to test the relationship between Dengue-positive cases and meteorological parameters. Datasets were used from NASA for meteorological parameters, and daily DENV cases were obtained from the Directorate General of Health Service (DGHS) open-access websites. During the study period, the mean of DENV cases was 882.26 ± 3993.18, ranging between a minimum of 0 to a maximum of 52,636 daily confirmed cases. The Spearman's rank correlation coefficient between climatic variables and Dengue incidence indicated that no substantial relationship exists between daily Dengue cases and wind speed, temperature, and surface pressure (Spearman's rho; r = -0.007, > 0.05; r = 0.085, > 0.05; and r = -0.086, > 0.05, respectively). Still, a significant relationship exists between daily Dengue cases and dew point, relative humidity, and rainfall (r = 0.158, < 0.05; r = 0.175, < 0.05; and r = 0.138, < 0.05, respectively). Using the ARIMAX and GA models, the relationship for Dengue cases with wind speed is -666.50 [95% CI: -1711.86 to 378.86] and -953.05 [-2403.46 to 497.36], respectively. A similar negative relation between Dengue cases and wind speed was also determined in the GLM model (IRR = 0.98). Dew point and surface pressure also represented a negative correlation in both ARIMAX and GA models, respectively, but the GLM model showed a positive association. Additionally, temperature and relative humidity showed a positive correlation with Dengue cases (105.71 and 57.39, respectively, in the ARIMAX, 633.86, and 200.03 in the GA model). In contrast, both temperature and relative humidity showed negative relation with Dengue cases in the GLM model. In the Poisson regression model, windspeed has a substantial significant negative connection with Dengue cases in all seasons. Temperature and rainfall are significantly and positively associated with Dengue cases in all seasons. The association between meteorological factors and recent outbreak data is the first study where we are aware of the use of maximum time series models in Bangladesh. Taking comprehensive measures against DENV outbreaks in the future can be possible through these findings, which can help fellow researchers and policymakers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049245PMC
http://dx.doi.org/10.3390/ijerph20065152DOI Listing

Publication Analysis

Top Keywords

dengue cases
36
cases
14
dengue
13
meteorological factors
12
cases wind
12
wind speed
12
relative humidity
12
glm model
12
correlation dengue
8
time series
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!