Modern factories are subject to rapid technological changes, including the advancement of robotics. A key manufacturing solution in the fourth industrial revolution is the introduction of collaborative robots (cobots), which cooperate directly with human operators while executing shared tasks. Although collaborative robotics has tangible benefits, cobots pose several challenges to human-robot interaction. Proximity, unpredictable robot behavior, and switching the operator's role from a co-operant to a supervisor can negatively affect the operator's cognitive, emotional, and behavioral responses, resulting in their lower well-being and decreased job performance. Therefore, proper actions are necessary to improve the interaction between the robot and its human counterpart. Specifically, exploring the concept of human-robot interaction (HRI) fluency shows promising perspectives. However, research on conditions affecting the relationships between HRI fluency and its outcomes is still in its infancy. Therefore, the aim of this cross-sectional survey study was twofold. First, the relationships of HRI fluency with job performance (i.e., task performance, organizational citizenship behavior, and creative performance) and job satisfaction were investigated. Second, the moderating role of the quantitative workload in these associations was verified. The analyses carried out on data from 200 male and female cobot operators working on the shop floor showed positive relationships between HRI fluency, job performance, and job satisfaction. Moreover, the study confirmed the moderating role of the quantitative workload in these relations. The results showed that the higher the workload, the lower the relationships between HRI fluency and its outcomes. The study findings are discussed within the theoretical framework of the Job Demands-Control-Support model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048792 | PMC |
http://dx.doi.org/10.3390/ijerph20065111 | DOI Listing |
Int J Environ Res Public Health
March 2023
Institute of Psychology, Faculty of Social Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland.
Modern factories are subject to rapid technological changes, including the advancement of robotics. A key manufacturing solution in the fourth industrial revolution is the introduction of collaborative robots (cobots), which cooperate directly with human operators while executing shared tasks. Although collaborative robotics has tangible benefits, cobots pose several challenges to human-robot interaction.
View Article and Find Full Text PDFFront Robot AI
November 2020
Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.
Contemporary research in human-machine symbiosis has mainly concentrated on enhancing relevant sensory, perceptual, and motor capacities, assuming short-term and nearly momentary interaction sessions. Still, human-machine confluence encompasses an inherent temporal dimension that is typically overlooked. The present work shifts the focus on the temporal and long-lasting aspects of symbiotic human-robot interaction (sHRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!