The conservation of avian diversity plays a critical role in maintaining ecological balance and ecosystem function, as well as having a profound impact on human survival and livelihood. With species' continuous and rapid decline, information and intelligent technology have provided innovative knowledge about how functional biological diversity interacts with environmental changes. Especially in complex natural scenes, identifying bird species with a real-time and accurate pattern is vital to protect the ecological environment and maintain biodiversity changes. Aiming at the fine-grained problem in bird image recognition, this paper proposes a fine-grained detection neural network based on optimizing the YOLOV5 structure via a graph pyramid attention convolution operation. Firstly, the Cross Stage Partial (CSP) structure is introduced to a brand-new backbone classification network (GPA-Net) for significantly reducing the whole model's parameters. Then, the graph pyramid structure is applied to learn the bird image features of different scales, which enhances the fine-grained learning ability and embeds high-order features to reduce parameters. Thirdly, YOLOV5 with the soft non-maximum suppression (NMS) strategy is adopted to design the detector composition, improving the detection capability for small targets. Detailed experiments demonstrated that the proposed model achieves better or equivalent accuracy results, over-performing current advanced models in bird species identification, and is more stable and suitable for practical applications in biodiversity conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048992 | PMC |
http://dx.doi.org/10.3390/ijerph20064924 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFToxicol Pathol
January 2025
Charles River Laboratories, Edinburgh, UK.
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!