Airborne quantum key distribution (QKD) that can synergize with terrestrial networks and quantum satellite nodes is expected to provide flexible and relay links for the large-scale integrated communication network. However, the photon transmission rate would be randomly reduced, owing to the random distributed boundary layer that surrounding to the surface of the aircraft when the flight speed larger than Mach 0.3. Here, we investigate the airborne QKD performance with the BL effects. Furthermore, we take experimental data of supersonic BL into the model and compare the airborne QKD performance under different conditions. Simulation results show that, owing to the complex small-scale turbulence structures in the supersonic boundary layer, the deflection angle and correspondingly drifted offset of the beam varied obviously and randomly, and the distribution probability of photons are redistributed. And the subsonic and supersonic boundary layer would decrease ~35.8% and ~62.5% of the secure key rate respectively. Our work provides a theoretical guidance towards a possible realization of high-speed airborne QKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047998 | PMC |
http://dx.doi.org/10.3390/e25030472 | DOI Listing |
J Phys Condens Matter
January 2025
Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.
Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.
View Article and Find Full Text PDFSci Rep
January 2025
College of New Energy and Environment, Jilin University, Changchun, 130012, China.
Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Industrial & Production Engineering, Bangladesh University of Engineering & Technology, Dhaka, 1000, Bangladesh.
3D printing is a popular and cost-effective method for producing lightweight engineering parts with enhanced characteristics and detailed prototypes. Nevertheless, the quality of the print can be diminished by the selection of improper parameter settings. This investigation explored the impact of printing factors on the tensile behavior of polylactic acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) specimens.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Christian Doppler Laboratory for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria; Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
Background And Objectives: Automated, anatomically coherent retinal layer segmentation in optical coherence tomography (OCT) is one of the most important components of retinal disease management. However, current methods rely on large amounts of labeled data, which can be difficult and expensive to obtain. In addition, these systems tend often propose anatomically impossible results, which undermines their clinical reliability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!