Terahertz (THz) waves are widely used in the field of non-destructive testing (NDT). However, terahertz images have issues with limited spatial resolution and fuzzy features because of the constraints of the imaging equipment and imaging algorithms. To solve these problems, we propose a residual generative adversarial network based on enhanced attention (EA), which aims to pay more attention to the reconstruction of textures and details while not influencing the image outlines. Our method successfully recovers detailed texture information from low-resolution images, as demonstrated by experiments on the benchmark datasets Set5 and Set14. To use the network to improve the resolution of terahertz images, we create an image degradation algorithm and a database of terahertz degradation images. Finally, the real reconstruction of terahertz images confirms the effectiveness of our method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047599 | PMC |
http://dx.doi.org/10.3390/e25030440 | DOI Listing |
J Phys Condens Matter
January 2025
ECE Department, University of Wisconsin at Madison, 1415 Engineering Dr, Rm 3442, Madison, WI 53706, USA, Madison, Wisconsin, 53706, UNITED STATES.
Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Metasurfaces have exhibited excellent capabilities in controlling main characteristics of electromagnetic fields. Thus, a lot of significant achievements have been attained in many areas especially in the fields of hologram and near-field imaging. However, some of these designs are implemented in a manner of interleaved subarrays that complicates the design and makes them difficult to achieve integration.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.
Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
Phys Chem Chem Phys
January 2025
College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroism as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!