Combined Effects of Acrylamide and Ochratoxin A on the Intestinal Barrier in Caco-2 Cells.

Foods

State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.

Published: March 2023

Acrylamide (AA) and ochratoxin A (OTA) are contaminants that co-exist in the same foods, and may create a serious threat to human health. However, the combined effects of AA and OTA on intestinal epithelial cells remain unclear. The purpose of this research was to investigate the effects of AA and OTA individually and collectively on Caco-2 cells. The results showed that AA and OTA significantly inhibited Caco-2 cell viability in a concentration- and time-dependent manner, decreased transepithelial electrical resistance (TEER) values, and increased the lucifer yellow (LY) permeabilization, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) levels. In addition, the levels of IL-1β, IL-6, and TNF-α increased, while the levels of IL-10 decreased after AA and OTA treatment. Western blot analysis revealed that AA and OTA damaged the intestinal barrier by reducing the expression of the tight junction (TJ) protein. The collective effects of AA and OTA exhibited enhanced toxicity compared to either single compound and, for most of the intestinal barrier function indicators, AA and OTA combined exposure tended to produce synergistic toxicity to Caco-2 cells. Overall, this research suggests the possibility of toxic reactions arising from the interaction of toxic substances present in foodstuffs with those produced during processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048136PMC
http://dx.doi.org/10.3390/foods12061318DOI Listing

Publication Analysis

Top Keywords

intestinal barrier
12
caco-2 cells
12
effects ota
12
combined effects
8
acrylamide ochratoxin
8
ota
8
effects acrylamide
4
intestinal
4
ochratoxin intestinal
4
caco-2
4

Similar Publications

Mucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.

View Article and Find Full Text PDF

Protease-activated receptor 2 (PAR2) is a central regulator of intestinal barrier function, inflammation and pain. Upregulated intestinal proteolysis and PAR2-signaling are implicated in inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS). To identify potential bacterial regulators of PAR2 activity, we developed a functional assay for PAR2 processing and used it to screen conditioned media from a library of diverse gut commensal microbes.

View Article and Find Full Text PDF

The gastrointestinal epithelium serves as a critical barrier separating intestinal lumen contents from the underlying tissue environment. Structure and function of the apical junctional complex (AJC), comprising tight and adherens junctions, are essential for establishing and maintaining a polarized and functional epithelial barrier. In this study, we investigated mechanisms by which an apical polarity protein Crumbs homolog 3 (CRB3) regulates AJC assembly and barrier function in primary murine intestinal epithelial cells.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.

Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.

View Article and Find Full Text PDF

The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!